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Abstract
Motivated by the need for improved understanding of physical processes involved in bacterial biodegradation of catastrophic 
oil spills, we review biophysical methods to probe bacterial motility and adhesion at oil–water interfaces. This review sum-
marizes methods that probe bulk, average behaviors as well as local, microscopic behaviors, and highlights opportunities 
for future work to bridge the gap between biodegradation and biophysics.
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Introduction

Interactions of bacteria with a nearby interface play a cru-
cial role in their ecology, including biofilm formation [1]. 
Whereas the vast majority of studies of bacteria at inter-
faces have focused on solid surfaces, bacterial interactions 
with fluid–fluid interfaces remain understudied despite their 
environmental and technological importance. For example, 
adhesion of bacteria to hydrocarbon–water interfaces plays 
a role in the reaction kinetics in a two-phase bioreactor [2] 
and in the motion of droplets driven by bacterial motility [3, 
4]. Air–liquid or liquid–liquid interfaces are often decorated 
with surfactants to control the interfacial stability, and thus, 
there is particular interest in understanding how surfactants 
affect bacterial behaviors at surfactant-laden interfaces. This 
understanding offers, as one example, new opportunities to 
engineer biomaterials: addition of surfactant to a suspen-
sion of cellulose-producing bacteria led to the formation of 
a macroporous foam of bacterial cellulose [5].

A recent and striking example of bacterial interactions 
with the interface between two liquids arose in the context 
of biodegradation, one of the most important remedia-
tion strategies for underwater oil spills [6]. After the cata-
strophic Deepwater Horizon MC252 (DWH) well blowout in 
2010, hydrocarbon-degrading microorganisms increased in 

numbers in the Gulf of Mexico [7, 8] and in nearby coastal 
environments [9], suggesting that metabolism of oil and nat-
ural gas by microbes played a role in the unexpectedly rapid 
disappearance [10, 11] of the 780,000 m 3 of light crude oil 
[12] released into the Gulf. Community studies revealed that 
the indigenous bacterial populations were enriched in genera 
such as Alcanivorax, Marinobacter, and Rhodobacteraceae 
that were thought to play a role in the rapid oil degradation 
[9]. Approximately, half of the hydrocarbons were released 
as gases and were rapidly consumed during the early months 
of the spill [8, 10]; thus, emergency response strategies 
focused on remediation of the liquid oil.

As part of the emergency response, chemical disper-
sants were applied at the surface and injected at the well-
head to break oil into smaller droplets [13, 14] and thereby 
increase the surface area per volume to speed degradation 
and weathering [15]. Approximately, 0.68 million gallons 
of two commercial dispersants (Corexit 9500 and 9527) 
were applied at the wellhead with a targeted dispersant:oil 
ratio of 1:25 [16, 17]. Although the dispersant is proprietary 
and its exact composition not publicly available, Corexit 
contains approximately 10% dioctyl sodium sulfosucci-
nate (DOSS), a small-molecule surfactant that is thought 
to facilitate rapid adhesion of dispersants to the oil–water 
interface [18]. During DWH, addition of Corexit led to a 
decrease in the mean droplet diameter, from ∼ 200 μ m (with 
no dispersant, characteristic of the size scale of turbulent 
eddies in the ocean [19]) to ∼ 10 μ m (with dispersant) [20]. 
Although large droplets rose to the ocean surface and were 
skimmed or burned, droplets of diameter 10–60 μ m were 
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neutrally buoyant in the Gulf waters and were transported 
as a disperse cloud [21] that was generally more accessible 
to microbes. Larger, buoyant droplets of diameter ∼300 μ m 
rose to the surface and formed a thin slick there [22].

Overall, the National Incident Command’s Flow Rate 
Technical Group estimated that the fate of approximately 
50% of the oil released from DWH (8% chemically dis-
persed, 17% naturally dispersed, and 25% residual oil [23]) 
was determined by degradation by bacteria [11]. Thus, 
understanding the effects of biodegradation coupled to those 
of surfactant addition is necessary to accurately predict dis-
persal of spilled oil [24]. This understanding, however, is 
complicated by the competing effects of bacterial processes 
along with physicochemical processes that affect spilled oil. 
For example, bacteria can naturally produce surfactants [25, 
26] and extracellular polymeric substances (EPS) that can 
emulsify oil to form droplets in seawater, although less effec-
tively than the commercial dispersant Corexit [27]. In turn, 
the EPS produced by adherent bacteria can modify droplet 
transport in the water column by increasing the viscous drag 
on a rising droplet [28, 29]. As a final example, simulations 
suggest that motile, chemotactic bacteria consume rising, 
buoyant droplets of hydrocarbons faster than nonmotile 
bacteria, but that the advantage imparted by chemotaxis 
decreases as the droplet diameter is increased [30].

The complex nature of the prolonged DWH oil spill pre-
cludes a simple answer as to whether subsurface applica-
tion of dispersants enhanced biodegradation in the Gulf of 
Mexico [14]. Nonetheless, this question remains of intense 
interest for oil-spill response. Studies, however, report con-
trasting effects of dispersants on bacterial growth and bio-
degradation. Microcosm experiments replicating surface and 
deepwater conditions in the Gulf of Mexico suggested that 
addition of Corexit enriched dispersant-consuming species 
(e.g., Colwellia) at the expense of hydrocarbon-degrading 
species (e.g., Marinobacter), reducing the overall rate of 
biodegradation [31]. These changes occurred as part of the 
broader evolution of microbial community structure after 
DWH, as revealed through mesocosm experiments sug-
gesting that rare taxa increased in abundance after DWH 
[32]. Likewise, in a microbial community deposited on a 
Louisiana beach, Corexit reduced the viability of hydro-
carbon-degrading Marinobacter; whereas, non-degrading 
Vibrio bacteria increase in abundance [33]. By contrast, 
experiments using surface seawater from the northeastern 
Gulf also find a shift in community composition but instead 
suggest that dispersant addition enhances the biodegrada-
tion rate [34]. Similarly, deepwater samples from the Gulf 
of Mexico acquired after DWH suggest that addition of 
Corexit enhanced biodegradation and lead to enrichment of 
Colwellia and Oceanospirillales species [35]. Experiments 
showing enhancement in degradation upon surfactant addi-
tion are consistent with studies from other environments, 

including off eastern Canada [36] and Halifax Harbor [37]. 
Microcosm studies also report contrasting effects of disper-
sants on the composition and metabolic activity of bacteria 
in consortia [38].

Finally, dispersant use affects other processes beyond 
bacterial growth and biodegradation. In the DWH spill, up 
to 14% of the oil released into the environment accumulated 
in marine oil snow (MOS) [39], agglomerates of bacteria, 
organic matter, and hydrocarbons that are more dense than 
water [40]. MOS was intensely studied after DWH because 
its sedimentation may have facilitated rapid transport of the 
spilled oil to the Gulf floor [41]. Whereas addition of oil 
appeared to enhance MOS formation [42, 43], contrasting 
effects were reported upon addition of Corexit. The disper-
sant enhanced MOS formation for bacteria [44] but not for 
diatoms [43]. This example suggests that dispersant effects 
on bacterial interactions with hydrocarbons can alter other 
mechanisms responsible for the transport and fate of spilled 
oil in marine environments.

Collectively, these studies suggest that the rate of deg-
radation by bacteria depends in part on their interactions, 
physicochemical as well as biological, with dispersed hydro-
carbons. The practical need to understand how dispersants 
affect these interactions and hence degradation [14] has, in 
recent years, motivated physical studies of bacterial behav-
iors at the oil–water interface. How macro-scale observa-
tions of degradation of hydrocarbons by bacteria connect 
to micro-scale bacterial behaviors at the interface, how-
ever, remains incompletely understood. As one example, 
lab-scale experiments examining a variety of surfactants, 
including DOSS and Corexit EEC9500A, on growth of 
Alcanivorax borkumensis, a marine oil-degrading bac-
terium, found that only nonionic Tween 20 increases the 
growth of bacteria [45]. Microscopic examination of oil 
droplets revealed that suspensions of A. borkumensis form 
oil-in-water emulsions (Fig. 1a), attributed to biosurfactant 
production and to attachment of bacteria at the oil–water 
interface. Bacteria grown for longer times in the presence 
of hexadecane attach more readily to a hexadecane–water 
interface, as indicated by a decrease in the interfacial tension 
over time [46] (Fig. 1b). Addition of Corexit EEC9500A 
reduces the attachment of A. borkumensis bacteria on the 
oil–water interface, and addition of Tween 20 eliminates 
it entirely, although these bacteria in the water phase are 
able to metabolize Tween 20 [47]. Formation of mature A. 
borkumensis biofilms at the oil–water interface, however, 
reduces the effectiveness of Corexit at dispersing oil [48]. 
Thus, lab-scale physical observations can complement and 
extend understanding of degradation processes occurring in 
natural, complex systems.

In this mini-review, we survey methods for physical 
studies of bacteria at oil–water interfaces and highlight 
insights into bacterial behaviors obtained from these 
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studies. This focus on biophysical methods complements 
recent reviews on microbial biodegradation [49, 50] and 
on cell surface hydrophobicity [51]. We describe ensem-
ble and bulk methods, summarize recent studies that 
apply single-cell experiments and simulations to charac-
terize heterogeneity and interactions, and list avenues for 
further research.

Bulk methods

Quantitatively interrogating the response of bacteria at 
liquid–liquid interfaces is challenging. Many methods for 
probing bacterial interfaces with surfaces involve solid 
substrates. These methods include quartz crystal micro-
balance with dissipation (QCM-D, reviewed for bacte-
ria in Ref. [52]) and atomic force microscopy (AFM, 
reviewed for bacteria in Ref. [53]). By contrast, fewer 
methods directly probe interactions of bacteria at the 
interface between two liquids. Here, we summarize bulk 
methods that directly assess the interactions of bacteria 

with dispersed hydrocarbons, focusing on those that per-
mit or enable studies at the liquid–liquid interface.

Hydrophobicity

Bacterial surface hydrophobicity can be quantified through 
the contact angle of water, typically measured on a lawn of 
bacteria grown on a flat, solid substrate. As one example, 
contact angle measurements revealed that Mycobacterium 
frederiksbergense grown on mixtures of hydrophobic anthra-
cene and hydrophilic glucose increase in hydrophobicity 
with increasing anthracene fraction (from 34◦ to 54–63◦ ) 
[54]. Contact angle measurements of several liquids on the 
lawn enable the calculation of the surface energy, through 
the methods of Wu [55] or Owens, Wendt, Rabel, and Kael-
ble (OWRK) [56–58]. Determination of the surface energy is 
useful for understanding interactions with liquid oil because 
thermodynamics plays a central role in determining the affin-
ity of bacteria for a surface [59]. Bacteria of low surface 
energy are likely to interact more readily with dispersed 
hydrocarbons, whose surface energies are generally lower 
than that of water.

The microbial adhesion to hydrocarbons (MATH) assay 
[61] is one of the most widely used methods to probe the 
affinity of bacteria for dispersed hydrocarbons. In this 
assay, the turbidity of an aqueous phase containing bacteria 
is measured before and after vortex mixing with a liquid 
hydrocarbon. Cells that adhere to the hydrocarbon droplets 
are removed from the aqueous phase into an emulsion, which 
creams. Thus, the decrease in adsorbance of the aqueous 
phase after mixing reflects the extent to which cells are 
captured by the hydrocarbon phase [62]. Assay results are 
reported as a percentage of the initial absorbance, reflecting 
the percentage of cells that remain in the hydrophilic phase, 
or as the percentage adhering to the hydrocarbon phase. In 
a ‘salting-out’ variation of this assay, ammonium sulfate is 
incrementally added to the aqueous phase to enhance adhe-
sion of bacteria to the hydrocarbon phase and thereby dis-
criminate between the adhesion capabilities of bacteria that 
are hydrophilic (for example, the percentage of E. coli K-12 
adhered to n-dodecane increases from 0.8% to 11% upon 
addition of ammonium sulfate; likewise, the percent adhe-
sion to p-xylene increases from 0 to 67%) [63]. This example 
also reveals that solution conditions—choice of hydrocar-
bons, salt concentration, aqueous phase—sensitively affect 
the quantitative value extracted from the MATH assay, as 
also highlighted in Table 1. Given its simplicity, the MATH 
assay has been widely applied to characterize interactions 
of bacteria, including the known hydrocarbon degraders 
Alcanivorax borkumensis (3% of cells cultured under clean 
environmental conditions but 59% of those grown under 
hexadecane adhered to hexadecane in marine broth) [46] 
and Marinobacter hydrocarbonoclasticus (Table 1) [60]; 

Fig. 1  Physical studies of the oil-degrading bacterium Alcanivorax 
borkumensis. a Fluorescence micrograph of A. borkumensis attached 
to hexadecane in artificial sea water. Reprinted with permission from 
Ref. [47]. Copyright (2018) American Chemical Society. b Normal-
ized interfacial tension �∕�0 for suspensions of A. borkumensis grown 
for the indicated times in the presence of hexadecane. Reprinted with 
permission from Ref. [46]. Copyright (2018) American Chemical 
Society
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the opportunistic pathogen Pseudomonas aeruginosa [64]; 
and several Burkholderia species (for which the percentage 
adhered to hexadecane decreased from ∼ 60 % at pH 2 to 
∼ 20 to 30% at pH 6) [65], at oil–water interfaces. Studies 
using the MATH assay have revealed, for example, that oil-
degrading Acinetobacter venetianus RAG-1 and Rhodococ-
cus erythropolis 20S-E1-c bacteria (96% and 90% adhesion 
to n-hexadecane, respectively) are able to stabilize oil-in-
water emulsions by directly binding to the oil–water inter-
face [66]. Similarly, MATH assays showed that addition of 
polycations to bacterial suspensions increases their apparent 
hydrophobicity (from near-zero adhesion to hexadecane to 
a maximum of ∼60% in the presence of poly-l-lysine), due 
to the reduction in the electronegativity of the cell surface 
as cations bind there [67].

The MATH assay has also been used to examine how bio-
logical factors affect adhesion of bacteria on the oil–water 
interface. For example, Acinetobacter venetianus VE-C3 
becomes hydrophobic (increase in percent adhesion to 
hexadecane from near-zero to 88%) only after exposure to 
alkanes, by incorporating nanodroplets of the alkane into its 
capsular polysaccharides [68]. For Acinetobacter sp. strain 
RAG-1, however, thin fimbriae control adhesion to alkanes 
[69]. Fimbriation also enables relatively hydrophilic bacte-
ria (as assessed through the MATH assay) to more readily 
access oil–water interfaces. For example, E. coli is hydro-
philic and typically exhibits weak adhesion to an oil–water 
interface (8% adhere to 1-dodecane in M63 medium) [70]. 
Overexpression of fimbriae in a strain with inducible fim-
brial expression, however, greatly increases its adhesion to 
hydrocarbons (increase in adhesion to dodecane from 3% in 
wild type to 6% in the inducible strain with no inducer to a 
maximum of 24% upon induction) [71].

Although the MATH assay’s simplicity has led to its 
widespread use, technical issues can complicate interpreta-
tion of the assay results. Careful control experiments are 
required to ensure that bacteria are not captured on the wall; 

in addition, use of a high-ionic strength buffer promotes 
adhesion of bacteria to the interface and minimizes electro-
static interactions [61]. Finally, the absorbance in the aque-
ous phase can also be increased by the presence of small, 
emulsified oil droplets in the aqueous phase, increasing the 
apparent hydrophobicity of the bacteria [72]. These limita-
tions can in part be overcome through microscopic imaging 
(Section “Microscopy”).

Rheometry

Rheological methods enable quantification of the mechani-
cal properties of communities of bacteria at the oil–water 
interface. In pendant drop tensiometry, the interfacial ten-
sion between two liquids is extracted from the shape of the 
silhouette of an axisymmetric droplet dispensed from a 
needle via the Young–Laplace equation [73] (Fig. 2a). A 
decrease in the interfacial tension as a function of time may 
indicate that bacteria attach to the interface (Fig. 1b). This 
method can be extended to obtain the dilatational elastic 
modulus by applying a sinusoidal oscillation at the needle. 
Both methods were applied to examine the development of 
biofilms of Marinobacter hydrocarbonoclasticus SP17 at an 
alkane–water interface (Fig. 2b, c) [74]. The initial decrease 
of the interfacial tension over time for M. hydrocarbonoclas-
ticus on both metabolizable and non-metabolizable alkane 
droplets suggests that adsorption is thermodynamically 
controlled by physicochemical factors. The elasticity of the 
interface, however, is greater on the metabolizable hexade-
cane, suggesting that the metabolic status of the cells affects 
the development of the elastic film [74]. Dynamic tensiom-
etry experiments on hydrophobic Acinetobacter venetianus 
RAG-1, a highly efficient oil-degrading bacterium, and Rho-
dococcus erythropolis 20S-E1-c (both aerobic, non-motile, 
and metabolically versatile) reveal that the interfacial tension 
decrease is similar for both bacteria [75], again suggesting 
that adhesion is primarily controlled by thermodynamics. 

Table 1  Mean and standard deviation for percent adhesion to hydrocarbon obtained from a MATH assay for marine bacteria under different 
solution conditions from the author’s experiments

SSW synthetic sea water, DOSS dioctyl sodium sulfosuccinate, an anionic surfactant, CTAB cetyltrimethylammonium bromide, a cationic sur-
factant, Triton-X-100 nonionic surfactant, CMC critical micelle concentration

Bacterium Hydrocarbon Aqueous phase Percent adhesion Reference

Halomonas titanicae Bead 10BA Dodecane SSW 18 ± 5 [3]
Halomonas titanicae Bead 10BA Hexadecane SSW 26 ± 4 [3]
Halomonas titanicae Bead 10BA Dodecane 0.9% NaCl 13 ± 1 [3]
Shewanella haliotis Bead B37B Dodecane SSW 55 ± 7 [3]
Marinobacter titanicae ATCC 49840 Dodecane SSW 70 ± 2 [60]
Marinobacter titanicae ATCC 49840 Dodecane SSW + 0.01CMC DOSS 54 ± 9 [60]
Marinobacter titanicae ATCC 49840 Dodecane SSW + 0.01CMC Triton X-100 69 ± 1 [60]
Marinobacter titanicae ATCC 49840 Dodecane SSW + 0.01CMC DOSS 68 ± 2 [60]

D
ow

nloaded from
 https://academ

ic.oup.com
/jim

b/article/47/9-10/725/6046091 by guest on 20 January 2021



729Journal of Industrial Microbiology & Biotechnology (2020) 47:725–738 

1 3

Different trends in the relaxation time upon a discontinu-
ous step change in surface area, however, suggest that the 
cell–cell interactions dictate whether the interfacial film is 
able to resist in-plane shearing (as for A. venetianus) or is 
unable to resist shear (as for R. erythropolis) [75]. Strains of 
the opportunistic pathogen Pseudomonas aeruginosa exhibit 
different film-forming behaviors, as indicated by tensiome-
try: PAO1 forms elastic films even in the absence of flagella, 
pili, or the pel polysaccharide—all known to aid adhesion 
on solid surfaces [76]. The marine bacterium Pseudomonas 
spp. ATCC 27259, strain P62, exhibits three stages of film 
formation at the, sequentially active, viscoelastic, and elas-
tic; the latter film wrinkles upon compression in tensiometry 
[77]. Together, these experiments reveal that bacteria can 
form films with various mechanical properties, which are 
dictated by interactions of bacteria with each other and with 
oil and water phases.

Rheological experiments can also be conducted using an 
interfacial shear cell, in which a tool is placed at the inter-
face of two liquids (as in Ref. [79]). In a controlled shear 
instrument, a given rotation rate is applied and the resulting 
torque on the tool is measured; in a controlled stress instru-
ment, a fixed stress is applied and the resulting rotation rate 
is measured. Rotating the tool unidirectionally enables meas-
urements of the viscosity as a function of rotation rate or 
applied stress. By contrast, oscillating the tool (at a specified 
frequency and amplitude) enables measurements of elastic 

( G′ ) and viscous ( G′′ ) moduli. Interfacial rheology experi-
ments on bacteria most commonly measure the change in 
moduli over time ( G�(t) and G��(t) ) to obtain information 
about biofilm development at the interface. Although more 
widely applied to air–water interfaces (e.g., for Vibrio chol-
erae [80] and Pseudomonas aeruginosa [81]), they have also 
been applied to oil–water interfaces. Measurements of the 
growth and attachment of five species (Pseudomonas putida 
KT2442, P. putida W2, Salmonella typhimurium, Escher-
ichia coli, and Bacillus subtilis) at the mineral oil–water 
interface revealed that hydrophobic bacteria are more likely 
to form interfacial biofilms, but their biofilms were not nec-
essarily more elastic [78] (Fig. 2f). Concomitant measure-
ments of interfacial tension in this system suggested that 
elastic film development is more likely due to bacterial and 
protein adsorption rather than surfactant release [78].

Microscopy

The images in Fig. 2b, e suggest that differences in the 
mechanical properties of bacteria-coated oil–water inter-
faces arise from differences in the number and distribution 
of cells thereon. Both electron and optical microscopy tech-
niques can be used to visualize cells at the oil–water inter-
face. Scanning electron microscopy of bacteria [47, 48] and 
biofilms [76] at oil–water interfaces provides high spatial 
resolution but is not able to image living bacteria. Hence, 

Fig. 2  a Schematic illustration of a pendant drop tensiometry experi-
ment. b Images of hexadecane drops in suspensions of M. hydrocar-
bonoclasticus, showing the development of a biofilm as indicated by 
the increase in opacity over time. c Interfacial tension as a function of 
time for hexadecane in a suspension of M. hydrocarbonoclasticus in 
synthetic sea water. d Schematic illustration of an interfacial rheology 

experiment at the oil–water interface. e Brightfield micrographs of E. 
coli, left, and P. putida KT2442, right, at a mineral oil–water inter-
face. f Time sweeps at constant amplitude �

s
(t) = 0.5 % and frequency 

� = 0.5 s −1 for bacteria at the mineral oil–water interface. a, d, e, f 
reprinted from Ref. [78] with permission from Elsevier. b, c Adapted 
with permission from Ref. [74]
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optical microscopy, which enables observations of living 
bacteria near the oil–water interface, is an essential tool for 
determining the interfacial location and density of bacteria. 
Both brightfield and fluorescence microscopy have been 
used to capture images of bacteria at interfaces (with exam-
ples in Refs. [46, 72]). These methods, however, are limited 
in their ability to examine 3D interfaces such as droplets; 
moreover, the resolution may be compromised by strong 
scattering arising from the mismatch in the index of refrac-
tion between bacteria and water or oil and water.

To overcome these limitations, confocal laser-scanning 
microscopy (CSLM) has been widely employed to image 
bacteria at oil–water interfaces. In CSLM, light emitted by 
a fluorophore in the focal plane of the excitation volume 
is captured through a pinhole, which blocks out-of-focus 
light; the focal point is then scanned rapidly to generate a 
virtual 2D or 3D image (Fig. 3). Judicious selection of fluo-
rescent labels, required to generate a signal, allows cells, 
extracellular polysaccharides, or other structures of interest 
to be specifically labeled [82, 83]. Confocal micrographs 
revealed that the alkane-degrading bacterium Rhodococcus 
erythropolis is able to attach to the interface of alkane drop-
lets, confirming that the bacteria themselves, and not simply 
biosurfactants that they may have released [84], are able to 
stabilize oil droplets in aqueous solutions [66]. Likewise, 
confocal micrographs of Acenitobacter venetianus VE-C3 
revealed the small alkane nanodroplets that are incorporated 
into the matrix surrounding the cell to increase its hydro-
phobicity [68]. Subsequent studies showed that growth 

conditions modulate the ability to bacteria to adhere to the 
oil–water interface. For example, confocal imaging revealed 
that A. borkumensis cultured in the presence of hexadecane, 
mimicking an oil-spill condition, attaches to hexadecane 
interfaces more rapidly than those cultured using dissolved 
carbon [46]. Starting from an inoculum from contaminated 
soil, biofilms grow on droplets of polychlorinated biphenyl 
(PCB) oil suspended in water and, when mature, are able to 
degrade the PCBs [85]. Notably, many studies employing 
CSLM do not examine or characterize individual cells, even 
though the spatial resolution (typically, ∼ 400 nm in-plane) 
is sufficient to resolve a single bacterium.

Single‑cell studies in experiment 
and simulation

The techniques described in Section “Bulk methods” provide 
insight into bulk properties of bacteria at oil–water inter-
faces. Optical microscopy, however, also provides the neces-
sary spatial resolution to resolve individual cells. Thus, these 
methods can also be applied in conjunction with computa-
tional algorithms to quantify the local behavior of bacteria, 
which may be heterogeneous even in a population of geneti-
cally identical bacteria [87]. Notably, this focus can provide 
the foundation needed to understand mechanisms affecting 
bacterial biodegradation of oil [49, 88]. In their simplest 
form, image-processing algorithms are applied to locate the 
centroids of micron-sized bacteria; subsequently, statistical 

Fig. 3  Confocal micrographs of bacteria adhered to oil droplets 
in aqueous environments. a Top and side views of A. borkumen-
sis. Reprinted with permission from Ref. [46]. Copyright (2018) 
American Chemical Society. b Top and side views of a mixed bac-
terial community. Reproduced from Ref. [85] with permission of 

the American Society for Microbiology. c Top and side views of M. 
hydrocarbonoclasticus. Reproduced with permission from Springer 
Nature from Ref. [86]. Copyright 2010. d Top view of R. erythropolis 
20S-E1-c. Reproduced with permission from Ref. [66] with permis-
sion of the American Society for Microbiology
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algorithms are used to link particle positions into trajec-
tories based on minimization of total displacement [89]. 
High-throughput tracking techniques are widely applied to 
investigate bacterial motility [90–93], adhesion [94–99], and 
biofilm formation [100, 101] on solid substrates. They have 
also been applied to investigate the hydrodynamics [102] 
and accumulation [103–105] of swimming bacteria near 
solid surfaces.

Fewer studies, however, have examined bacterial behav-
iors near fluid–fluid interfaces, and most focus on air–liquid 
rather than liquid–liquid interfaces. Studies of swimming 
and accumulation are of fundamental interest because the 
no-stress boundary condition at a fluid–fluid interface can 
modify bacterial behaviors. For example, the difference in 
hydrodynamic drag on the top and bottom of a flagellum 
generates a wall-induced clockwise moment, which causes 
bacteria to swim in clockwise circles near a solid surface 
[106]. The slip boundary condition at the air–water inter-
face, however, modifies the direction of the surface-induced 
moment, such that bacteria instead swim in counterclock-
wise circles [107]. As a second example, accounting for the 
compressibility of a surfactant-decorated air–water interface 
is required to predict the normal and tangential swimming 
speeds [108]. Thus, the physics of swimming is expected to 
be modified near oil–water interfaces.

Computational models complement single-cell experi-
mental studies by allowing ranges of physical properties to 
be systematically varied. In the ‘squirmer’ model, swim-
ming microorganisms are modeled as spheres swimming 
under conditions of low Reynolds number, in which viscous 
stresses dominate their motility [109]. Mathematically, many 
flagellated bacteria (e.g., the well-studied E. coli, a model 
bacterium for motility) generate extensile fluid flow along 
the axis of swimming. Such bacteria are commonly modeled 
to lowest order as ‘pusher’ force dipoles [110], arising from 
the balance of drag force from the body of a bacterium on 
the fluid and the countervailing thrust from the flagellum. 
Some monoflagellated bacteria (e.g., P. aeruginosa [111, 
112] and Vibrio alginolyticus [113]), however, can switch 
the direction of rotation of the flagellum and exhibit ‘puller’ 
as well as ’pusher’ behavior. ‘Pullers’ generate contractile 
flow along the axis of swimming, and are also modeled as 
dipoles of sign opposite that of pushers. Higher-order quad-
ripolar terms in the force expansion, however, may need to 
be included to adequately describe the velocity correlations 
among swimming bacteria [114].

Here, we highlight insights into bacterial behaviors near 
oil–water interfaces that are gained from applying experi-
mental and computational methods that give access to inter-
actions of individual bacteria.

Motility and accumulation near oil–water interfaces

The opportunistic pathogen P. aeruginosa, which bears one 
polar flagellum, can exhibit directed motion that enables it 
to accumulate at an oil–water interface [112] and transport 
cargo there [115]. Single-cell tracking of bacteria moving 
near a planar oil–water interface revealed four types of motil-
ity behaviors that can be distinguished through statistical 
analysis of the trajectories (Fig. 4a). Some bacteria briefly 
visit the interface and then leave (‘visitor’). Other bacteria 
remain in the plane of the interface for at least 60 s. These 
bacteria diffuse passively (‘diffusive’) or swim in circular 
trajectories while oriented either perpendicular (‘pirouette’) 
or planar (‘curly’) with respect to the oil–water interface 
[115]. The motility behaviors produce differences in dis-
persal, as quantified through the ensemble-average mean-
square displacement (MSD) 

⟨

Δr2(t)
⟩

 (Fig. 4b). The MSD 
of diffusive bacteria scales linearly with time (i.e., MSD 
∼ t ), as expected for micron-size particles undergoing ran-
dom walks. Bacteria using other motility behaviors exhibit 
superdiffusive motion on short time scales, as indicated by 

Fig. 4  a Trajectories of P. aeruginosa bacteria moving near a planar 
interface reveal four characteristic motility behaviors (visitor, dif-
fusive, pirouette, or curly). b Mean-square displacement (MSD) as a 
function of time for P. aeruginosa bacteria exhibiting each of the four 
motility behaviors. The ensemble-average MSD is shown in yellow. 
Adapted with permission from Ref. [112]. Copyright (2020) Ameri-
can Chemical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/jim

b/article/47/9-10/725/6046091 by guest on 20 January 2021



732 Journal of Industrial Microbiology & Biotechnology (2020) 47:725–738

1 3

the scaling of the MSD ∼ t
2 on short time scales, and tran-

sition to diffusive motion on long time scales. As a result, 
colloids attached to bacteria moving on the interface exhibit 
effective diffusivities that are up to fifty times greater than 
that of colloids freely diffusing at the interface [115]. Thus, 
motility behaviors can generate a wide range of bacterial 
transport coefficients at the oil–water interface.

Microscopic experiments on smooth-swimming (non-
tumbling) E. coli revealed that bacteria accumulate more 
near a liquid–liquid or gas–liquid interface than predicted 
by theories developed for a solid–liquid interface. Moreo-
ver, accumulation is enhanced as the viscosity ratio between 
the two fluids is decreased [116]. Importantly, single-cell 
simulations incorporating both physicochemical and hydro-
dynamic interactions revealed that accumulation is due 
to a near-planar cell orientation near the interface [116]. 
Computational methods were also employed to quantify the 
distribution of microorganisms in a thin film of liquid that 
was confined on one side by air and by on the other by an 
immiscible liquid [117]. This geometry is a simplified rep-
resentation of bacteria in an aqueous film near an oil phase, 
such as an oil slick found under spill conditions. Under 
the model conditions, the length of the flagella relative to 
the body length and the ratio of the viscosities of the two 
liquid phases determine whether bacteria accumulate near 
the liquid–liquid or liquid–air interface (Fig. 5) [117]. Sur-
factants cause interfaces to behave more like solids, so that 
surfactant-decorated oil–water interfaces may drive passive 
hydrodynamic trapping similar to that observed near a solid 
object [117]. Thus, these studies reveal that the interfacial 

hydrodynamics of a planar fluid–liquid interface affects the 
accumulation of bacteria there.

Adhesion on oil–water interfaces

Finally, single-cell microscopy experiments demonstrated 
that both thermodynamic and kinetic factors affect adhesion 
of the oil-degrading marine bacterium Marinobacter hydro-
carbonoclasticus SP17 bacteria to surfactant-decorated oil 
droplets [60]. The increase in the surface density of bacte-
ria over time follows a first-order Langmuir kinetic model, 
in accord with results from bulk MATH assays [118], and 
depends weakly on droplet diameter. Most adhered bacteria 
align parallel to the surface, as expected through free-energy 
arguments for micron-sized particles [119]. Moreover, the 
long-time density obtained for droplets decorated with a 
variety of surfactants, including anionic sodium sulfosuc-
cinates (such as DOSS), cationic CTAB, and non-ionic 
Tween-20, approximately collapses onto a single curve as 
a function of the interfacial tension. These results indicate 
that thermodynamics largely controls adhesion. Nonetheless, 
kinetic factors arising from electrostatic interactions also 
play a role in the long-time interfacial density, as revealed 
by the significant percentage ( ∼ 30–40%) of bacteria that do 
not adopt the near-planar orientation predicted from free-
energy arguments [60]. Thus, imaging methods suggest an 
additional barrier to adhesion arising from physicochemical 
interactions.

Despite possessing a flagellum, M. hydrocarbonoclasti-
cus does not swim under the conditions of Ref. [60], and 
thus, the strong dependence of its adhesion on thermody-
namics may be expected from earlier studies of micron-sized 
colloids at liquid–liquid interfaces [121]. Many marine 
bacteria, however, are able to swim and, additionally, may 
exhibit chemotaxis towards dispersed hydrocarbons [122, 
123]. Single-cell CSLM experiments using the marine bac-
terium Halomonas titanicae (Fig. 6a, b) revealed that motile 
bacteria adhere more rapidly to the oil–water interface on 
short time scales and attain higher interfacial densities on 
long time scales (Fig. 6c) [120]. Both faster kinetics and 
higher density may enhance the formation of biofilms on the 
oil–water interface, thought to be the dominant strategy in 
nature for oil biodegradation [49]. Increasing the surfactant 
concentration reduces adhesion of both motile and nonmo-
tile bacteria. Interestingly motile but not nonmotile bacteria 
are able to adhere to the oil–water interface even at very 
high surfactant concentrations [120], where the interfacial 
tension is very low.

Fig. 5  Schematic illustration showing the properties that determine 
whether flagellated swimmers accumulate at the air–liquid (A–L) or 
liquid–liquid (L–L) interface. Swimmers with short flagella accumu-
late at A–L, whereas swimmers with long flagella accumulate near 
L–L. Pullers accumulate more tightly than pushers at all interfaces, 
as indicated by the shorter accumulation length over which bacteria 
accumulate (i.e. lpull < lpush). Reproduced from Ref. [117] with per-
mission from The Royal Society of Chemistry
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Outlook: avenues to further microscopic 
understanding of biodegradation

Biophysical studies of bacterial behavior near oil–water 
interfaces have the opportunity to identify relevant physi-
cal phenomena that may significantly impact the efficacy 
of biodegradation processes in oil-spill response [14] as 
well as applications in biotechnology. Methods such as the 
MATH assay, rheology, and microscopy offer the ability 
to probe ensemble behaviors at oil–water interfaces and 
quantify cell hydrophobicity, mechanics, and distribution, 
respectively. Single-cell tracking experiments and compu-
tational simulations can enable the characterization of local 
or single-cell behaviors, and have led to insights into hetero-
geneous behaviors in motility, accumulation, and adhesion 
at oil–water interfaces.

Although there exist a variety of methods to assess bac-
terial behaviors at the oil–water interface, there remains 
a gap between biophysical studies and the microscopic 
understanding of biodegradation needed to remediate cata-
strophic oil spills. To bridge this gap, physical methods 
should be applied to examine the role of biological mecha-
nisms—including but not limited to surface appendages 
[124, 125], extracellular polymers [126], and sensing path-
ways [127]—on bacterial interactions with the oil–water 
interface. Second, physical studies have focused on well-
studied pathogenic bacteria such as E. coli and P. aerugi-
nosa. Thus, application of these methods to both single-
species cultures (including Alcanivorax and Marinobacter) 
as well as consortia of hydrocarbon-degrading bacteria has 

the potential to generate significant insight if they can be 
extended to the long time scales relevant for biofilm for-
mation and biodegradation. These experiments should be 
carried out over a range of environmentally relevant condi-
tions and with different hydrophobic substrates to broadly 
survey how these factors affect surfactant effects. The use 
of methods such as flow cytometry and fluorescence acti-
vated cell sorting [128–130] may provide a way to quantify 
metabolic activity [131] of individual bacteria in response 
to varying conditions. Finally, biodegradation processes 
in natural environments entail complex flows, as exempli-
fied by the ‘oil cloud’ formed Corexit was applied at the 
DWH wellhead and subsequently transported through the 
Gulf. Extension of physical methods to gain insight into 
the effects of flows (including those driven by gradients 
in temperature or salinity in marine environments) [88] 
and confinement (by nearby droplets) [132] on bacterial 
interactions with dispersed oil will improve our ability to 
tailor and improve the emergency response for different 
environments.
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