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ABSTRACT: We use molecular simulation to characterize the
dynamics of supercooled liquids confined in quasi-2D slit
geometries. Similar to bulk supercooled liquids, the confined
systems exhibit subdiffusive dynamics on intermediate time scales
arising from particle localization inside their neighbor cages,
followed by an eventual crossover to diffusive behavior as cage
rearrangement occurs. The quasi-2D confined liquids also exhibit
signatures of long-wavelength fluctuations (LWFs) in the lateral
directions parallel to the confining walls, reminiscent of the collective displacements observed in 2D but not 3D systems. The
magnitude of the LWFs increases with the lateral dimensions of systems with the same particle volume fraction and confinement
length scale, consistent with the logarithmic scaling predicted for 2D Mermin-Wagner fluctuations. The amplitude of the fluctuations
is a nonmonotonic function of the confinement length scale because of a competition between caging and strengthening LWFs upon
approaching the 2D limit. Our findings suggest that LWFs may play an important role in understanding the behavior of confined
supercooled liquids due to their prevalence over a surprisingly broad range of particle densities and confinement length scales.

■ INTRODUCTION
Strongly confined fluids exhibit properties that are distinct
from those observed in bulk systems. For example, in a variety
of fluids, including gases,1,2 liquids,3,4 polymers,5−7 and
colloidal suspensions,8,9 confinement has been shown to
induce solid-like behavior that strengthens as the characteristic
confinement length scale is decreased. There remains
significant interest in understanding how the properties of
fluids change as they are confined from three toward two
dimensions, with practical relevance in applications ranging
from separations and porous media characterization to energy
storage and production and materials synthesis.1,2,10−14

The crossover from two to three dimensions has been
extensively explored for one prototypical supercooled liquid, a
concentrated suspension of nearly hard spheres. When
confined in a quasi-2D slit geometry, in which the height of
the slit is much smaller than its lateral dimensions, uniformly
sized particles form layers at the walls15,16 and arrange into a
variety of ordered crystal structures.17,18 Although introducing
size dispersity can frustrate long-range crystalline ordering,19,20

these systems can still undergo a transition to a disordered
solid-like phase, in which the particle dynamics become
increasingly slow and eventually arrest, upon increasing
confinement. This transition is reminiscent of the 3D glass
transition, in which the viscosity dramatically increases as the
liquid is cooled. The dynamical signature of the 3D glass
transition is the emergence of a plateau in translational
correlation functions, signaling the formation of transient local

cages that constrain particle motions. This plateau extends to
longer times as the temperature is decreased or the particle
concentration is increased.8,21,22

Liquids in 2D and 3D exhibit different dynamics23 and phase
behavior, however, complicating understanding of the relation-
ship between the 2D and 3D glass transitions. In 2D, the
crystal phase is unstable in the thermodynamic limit due to
long-wavelength Mermin-Wagner (MW) fluctuations that
represent elastic modes.24−26 Evidence of MW fluctuations
has been recently found in both 2D liquids27 and amorphous
solids.28 For 2D supercooled liquids, MW fluctuations disrupt
particle cages and enable particles to become delocal-
ized.23,29−31 Thus, 2D supercooled liquids exhibit distinct
dynamics from their 3D counterparts.23,29 However, as shown
in experiments28,31,32 and simulations,27,30,33,34 the behavior in
2D and 3D systems is similar when particle motions are
characterized relative to the cages formed by their nearest
neighbors.30,33,34 These studies suggest that analysis of the
cage-relative motions of particles can be used to investigate the
behavior of confined supercooled liquids as the dimensionality
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continuously changes from 2D to 3D, which remains
incompletely understood.35

Here, we use molecular dynamics (MD) simulations to show
that quasi-2D supercooled liquid systems of particles confined
in slits exhibit long-wavelength fluctuations (LWFs) analogous
to those previously observed in dense monolayers. The
magnitude of collective particle displacements in the lateral
directions parallel to the confining walls, obtained by removing
the cage-relative contribution to the mean-square displace-
ment, increases with system size, consistent with the
logarithmic growth expected for MW fluctuations. Both the
amplitude of the fluctuations and the scaling constant depend
nonmonotonically on the confinement length scale, which we
attribute to a competition between arrest-driven caging and
strengthening LWFs as the 2D limit is approached. These
results indicate that dynamics in confined quasi-2D super-
cooled liquids are affected by steric effects and LWFs.

■ METHODS
Simulations. We used event-driven molecular dynamics

(MD)19,20,36 to simulate N = 6912−42 592 hard spheres
confined in a slit geometry, consisting of two repulsive parallel
walls separated by a distance W along the z-axis of the
simulation cell (Figure 1(a)). The walls have edge lengths of L

along the x- and y-axes of the cell, and periodic boundary
conditions are imposed in these directions to model an infinite
slab. The particles have unit mass m = 1 and are polydisperse
in size (ca. 23%) to prevent spontaneous crystallization.
Polydispersity was introduced by assigning each particle a
diameter σ randomly drawn from the distribution

=P A( ) /i i
3 with σi ∈ [0.7255, 1.609] (Figure 1(b)),

yielding an average size of σ̅ = 1. Following convention, we

adopt a system of reduced units to describe the systems and
our results, in which Boltzmann’s constant kB = 1, and σ̅ and

= m k T( / )B
1/2 are the fundamental measures of length and

time, respectively, where T is the temperature.19 We define the
confinement parameter H = W − σ̅ based on the width of the
slit geometry accessible to an average-sized particle; the
volume fraction = N WL/63 2 is defined in terms of W.
Initial particle configurations were generated by gradually

compressing a system with ϕ = 0.45, in increments of Δϕ =
0.01, to achieve the final targeted ϕ and H. After each
incremental compression step, stress in the system was relaxed
using MD and/or swap Monte Carlo (SMC).37−39 In most
cases, stress relaxation was achieved by a running short MD
simulation 10 time units in duration. For very confined or
dense systems, relaxation following each of the last few
compression steps was achieved by performing 105 sweeps
with the SMC algorithm, where 1 sweep is N attempted MC
moves. Following compression, the systems were equilibrated
using SMC, performing enough MC sweeps (105−109) to
ensure that the particles moved at least twice the mean particle
diameter on average. The final equilibrated configurations from
the SMC simulations were used to propagate microcanonical
(NVE) MD trajectories 102−104 time units in duration for the
analysis of dynamics. Initial particle momenta in the MD
simulations were randomly sampled from the Maxwell−
Boltzmann distribution specified by T = 1. Dynamical
quantities and associated statistical uncertainties were
estimated from the averages and standard errors, respectively,
computed from MD trajectories propagated from 50
independent realizations of the system at each state point
using the protocols described above. Thus, approximately
50 000 simulations in total were performed for this study.
Mean-Square Displacements. From the trajectories, we

characterize lateral positional fluctuations in the plane parallel
to the walls using the mean-square displacement (MSD),

= | |
=

M t
N

tr( )
1

( )
i

N

i
1

2

(1)

where δri(t) = ri(t) − ri(0), ri = {xi, yi} is the position of
particle i, t is the observation time, and the brackets ⟨···⟩
indicate an average over different observation windows.
The cage-relative MSD MCR(t) characterizes the mean-

square displacement of a particle relative to the motion of the
cage formed by its nearest neighbors and is defined as

= [ ]M t
N

tr( )
1

( )
i

N

i
CR CR 2

(2)

where
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n n
CR

nn 1
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(3)

and Nnn(i) indexes the nearest neighbors that form the cage for
particle i.
Finally, the effects of LWFs can be analyzed by removing the

contributions from cage-rattling from M(t):

=t M t M t( ) ( ) ( )CR (4)

Neighbor Identification. Evaluation of the cage-relative
MSD using eqs 2 and 3 requires identifying particles that form

Figure 1. (a) Confined hard-sphere supercooled liquid system with
{ϕ, H} = {0.57, 9.00}. The walls of the slit geometry are rendered as
black rectangles, and the particles are represented as spheres shaded
based on their diameter (small to large using a purple to yellow color
scale). (b) Probability distribution of the particle diameter σi, selected
from the distribution =P A( ) /i i

3 with σi ∈ [0.7255, 1.6099] such
that the average size σ̅ = 1.
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the local neighbor cages. To account for the strong
polydispersity, neighbors were identified using the surface-to-
surface distance

= | |
+

s x x
2ij i j

i j

(5)

where xi = {xi, yi, zi}. Two particles were considered to be
neighbors if sij ≤ 0.5; this value corresponds to approximately
the first minimum in the probability density distribution of sij.
Dynamical Corrections. For some liquid-like systems, we

used a modified version of eq 4:

=t M t M t t t( ) ( ) ( ) ( ) ( )CR
DD CB (6)

where ΔγDD(t) and ΔγCB(t) are corrections accounting for the
asymptotic decorrelation of particle displacements at long
times and local rearrangements of neighboring particles at
intermediate times, respectively.29,34 These corrections are
needed when the time scales associated with LWFs and the α-
relaxation (tLWF and tα, respectively) are of similar order. For
the systems considered here, tLWF ≈ 101−102 time units. Thus,
we use the criterion tα ≲ 102tLWF ≈ 104 time units as an
indicator that these corrections may be necessary, employing
an operational definition for tα as the time required for
particles to displace one diameter on average (i.e.,

=M t( ) ).2 For many of our systems, we note that tα
moves outside the accessible window for MD simulations,
indicating that these systems are effectively glasses on these
time scales and preventing characterization of the terminal
relaxation behavior.
For liquids, the long-time behavior of MCR is given by

= +M t M t N i M t( ) ( ) ( ) ( )CR
nn

1 (7)

implying that MCR(t) > M(t). This behavior arises because the
displacements of particles become uncorrelated from those of
other particles in liquids on long times.29 For systems where
MCR(t) > M(t), we follow ref 29 and fit the long-time behavior
of MCR(t) and M(t) to power-law functions of the form Cta +
b, where C, a, and b are fitting parameters and a is globally fit
for systems of constant ϕ and H. The correction for
displacement decorrelation accounts for differences in the
long-time growth of MCR(t) and M(t) and is given by

=t C C t( ) ( )M M
a

DD CR (8)

Similarly, power-law growth of particle displacements at
intermediate times can arise from local rearrangements in
neighboring particles, which is not accounted for in the
definition of MCR(t). We correct for this behavior using29,34

=t Dt( ) e
CB (9)

where D and e < 1 are constants found by fitting the function
obtained after correcting for displacement decorrelation.
Correlated Displacements. Correlations between the

displacements of particles and those of their surrounding
neighbors were quantified using

=
·
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This function is a modified, particle-resolved version of the
spatial−temporal correlation function used in refs 32, 40, and
41. The maximum operation in the denominator ensures −1 ≤
Svec,i ≤ 1 and that very small or large neighbor displacements

are not disproportionately weighted. The function assumes
values of 1 and −1 when the displacement of the central
particle i is perfectly correlated and anticorrelated with the
displacements of its surrounding neighbors, respectively.
Nearest neighbors were identified using the same surface-to-
surface distance criterion used in the evaluation of MCR.
To facilitate visualization, we coarse-grained the displace-

ment vector correlation function into a continuous field using
Gaussian functions centered at the location of each particle:

=
=
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(11)

where the sum is taken over the Ncl particles in the contact
layer near the lower wall.

■ RESULTS AND DISCUSSION
Dynamics of Confined Supercooled Liquids. We

analyze the dynamics of hard-sphere supercooled liquids
confined in a quasi-2D slit geometry. The state of the systems
is nominally specified by {ϕ, H}. We study ranges of these
parameters (0.550 ≤ ϕ ≤ 0.600 and 1.0 ≤ H ≤ 14.0)
corresponding to high to moderately confined dense packings
of particles that exhibit glassy dynamics.
The MSDs for a moderately confined system (H = 3.00)

illustrate typical behaviors of a supercooled liquid (Figure
2(a)). At volume fraction ϕ = 0.560, the MSD exhibits ballistic
behavior on short time scales, subdiffusive behavior (power-

Figure 2. Mean-square displacement M(t) functions for systems with
various particle volume fractions ϕ = 0.560−0.600 and confinement
parameters (a) H = 3.00 and (b) H = 8.00. The arrow indicates the
direction of increasing ϕ in steps of Δϕ = 0.005.
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law scaling such that M(t) ≈ tα with α < 1) on intermediate
time scales (t ≈ 1−10), and an upturn (t ≈ 10) and gradual
crossover to diffusive scaling (M(t) ≈ t) on long times (t >
10). These features are common in dense particle suspensions
and deeply supercooled liquids. The subdiffusive behavior at
intermediate times arises from “cage-rattling”, in which
particles are localized inside the cages formed by their
surrounding neighbors. The upturn observed for liquid but
not glassy samples indicates the onset of local rearrangements
that eventually accumulate and allow particles to escape the
cages formed by their neighbors.34 Cage escape is associated
with the α- (or terminal-) relaxation process in the liquid and
occurs on characteristic time scale tα.
Upon increasing ϕ, the subdiffusive region becomes more

pronounced and persists for longer duration, reflecting
enhanced caging and slowing of the dynamics.8,9,42 The upturn
in M(t) eventually moves outside of the observation window
for ϕ > 0.585, indicating that the systems behave as glassy
solids on the simulated time scales. For a less-confined system
(H = 8.00), the MSDs also become more subdiffusive as ϕ is
increased and are larger at a given ϕ than those measured at H
= 3.00 (Figure 2(b)).
Similar trends are observed upon decreasing H when the

volume fraction is held constant (Figure 3). Interestingly,
below a particular value of H, oscillations appear in the
subdiffusive caging plateaus (t ≈ 1−10). These oscillations are

not observed in 3D amorphous solids8,32,43 but have been
previously reported in 2D glasses, where they have been
interpreted as evidence of LWFs.30,33,34

Collective Dynamics. In model systems with LWFs,
measured properties often depend sensitively on system size
due to the artificial suppression of fluctuations larger than the
linear dimension L of the periodic simulation cell. Although
finite-size effects are generally undesirable, they can be
rigorously analyzed to detect and characterize LWFs in
model systems.44,45 Accordingly, we examine the influence of
L on MCR(t) and Γ(t).
The cage-relative MSD MCR(t) (eq 2) characterizes particle

displacements in the reference frame of the center-of-mass of
their surrounding nearest neighbors (Figure 4(a)). Hence, it

describes the cage-rattling dynamics that arise from the relative
motion of particles inside their local neighbor cages. We
observe that MCR(t) exhibits a crossover from ballistic scaling
on short times to diffusive scaling on long times and collapses
for all L, indicating that the local dynamics do not exhibit
finite-size effects (Figure 4(b)).
By contrast, the contribution remaining after MCR(t) is

subtracted from the MSD, Γ(t) (eq 4), retains information
about collective translational particle motions (Figure 4(a)).
This function varies with system size on intermediate time
scales, increasing with L for a given observation time t (Figure
4(b)). This system-size dependence indicates the presence of
LWFs with characteristic size > L( ).30,34

Figure 3. Mean-square displacement M(t) functions for systems with
various confinement parameters H and particle volume fractions of
(a) ϕ = 0.570 and (b) ϕ = 0.600. The arrow indicates the direction of
decreasing H. The confinement parameters in (a) are H = 1.00, 1.20,
1.34, 1.70, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00. The
confinement parameters in (b) are H = 2.00, 2.50, 3.00, 4.00, 5.00,
6.00, 7.00, 8.00, 9.00, 10.00, 11.00, 12.00, 13.00, 14.00.

Figure 4. (a) Mean-square displacement M(t), cage-relative MSD
MCR(t), and Γ(t) =M(t) − MCR(t) for a system with {ϕ, H} = {0.570,
3.00} and periodic edge length L = 54.3. (b) MCR(t) and Γ(t) for
systems with various L and {ϕ, H} = {0.570, 5.00}.
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Logarithmically Divergent Fluctuations. Similar finite-
size effects are absent in 3D systems but have been observed in
2D solids where they have been attributed to long-wavelength
Mermin-Wagner fluctuations.24,25,28 These LW acoustic modes
result in collective translational particle displacements, which
are isolated in the function Γ(t). Thus, the time scale
associated with the local maximum in Γ on intermediate
time scales is an estimate of the characteristic time scale tLWF at
which LWFs emerge, and the corresponding magnitude
Γ(tLWF) provides an estimate of the squared amplitude of the
LWFs.34

To determine whether the LWFs observed in our quasi-2D
systems are Mermin-Wagner-like, we examine the L-depend-
ence of Γ(tLWF) for systems with 0.550 ≤ ϕ ≤ 0.600.
Specifically, for an elastic medium, the squared amplitude of
the Mermin-Wagner fluctuations diverges logarithmically with
system size A2 ∼ B log(L), where the scaling constant B reflects
the elastic contributions to the thermal vibrations and is a
function of the shear and bulk moduli of the system.34 In
agreement with this expectation, we observe that the increase
in Γ(tLWF) with L is consistent with logarithmic scaling over
distinct ranges of system size and H for each isochore (Figure
5(a,b)), suggesting the presence of MW fluctuations. Further,
Γ(tLWF) varies nonmonotonically with both ϕ (constant H,
Figure 5(a)) and H (constant ϕ, Figure 5(b)).
We note that the logarithmic scaling law above is derived in

the continuum limit for an elastic medium and hence only
valid for the large L (large N) limit. Consequently, deviations
are expected in small systems, followed by an eventual
crossover to the predicted logarithmic scaling behavior as L
becomes sufficiently large. In studies of 2D systems, however,
consistency with logarithmic scaling has been observed in
systems that are significantly smaller than those examined
here.28,34 Hence, we observe behavior consistent with the
logarithmic scaling prediction over the entire range of system
sizes examined in our study.
To capture the relationship between the fluctuation

magnitude and the confinement, we examine the H-depend-
ence of the logarithmic scaling coefficient B, which for a 2D
solid reflects the elastic contributions to the thermal vibrations
and is a function of the shear and bulk moduli.34 For ϕ =
0.570, the elastic coefficient B exhibits a pronounced local
maximum at an intermediate H; by contrast, for ϕ = 0.600, B is
weakly dependent on H (Figure 6(a)).
We posit that the nonmonotonic variation of both Γ(tLWF)

and B with H for ϕ = 0.570 arises from the competition of two
physical processes: changes in local structure driven by
increased caging and a transition to 2D-like LWFs as the
extent of confinement is increased. In weakly confined systems
(large H), particles remain mobile. As a result, when H is large,
the local structure is spatially uniform. As H is decreased, the
time scale for liquid rearrangement increases, and the time for
onset of LWFs tLWF decreases (Figures 3 and 4(b)). These
time scales become increasingly separated, and the amplitude
of LWFs increases as the system becomes more confined (i.e.,
more 2D). These factors drive the increases in Γ(tLWF) and B
as H is decreased from the weakly confined regime. For small
H, however, confinement drives slowing of dynamics8 and
particles are strongly localized into cages, as in deeply
quenched glassy systems.46−48 In this strongly confined regime,
decreasing H reduces variation in local structure due to
increasing arrest and hence reduces Γ(tLWF) and B. Thus, the
competition between arrest-driven caging and strengthening

2D LWFs leads to the local maxima in Γ(tLWF) and B at an
intermediate value of H.
Along the ϕ = 0.600 isochore, by contrast, all samples

exhibit glassy dynamics, and the elastic coefficient B is weakly
dependent on H. The relatively small change in B with H likely
reflects the weaker variation in local structure at higher ϕ due
to steric and packing constraints. To distinguish the effects of
structure on B and Γ(tLWF) from those of confinement, we
normalized B by a structural metric. To select an appropriate
metric, we note that finite variance in the distance between
nearest neighbors is a necessary condition to obtain LWFs.24,25

Further, for 2D crystals, the long-time limit of MCR is twice the
variance of the neighbor−neighbor distance.49,50 We therefore
hypothesize that a metric based upon MCR can be used to
remove variation in B that arises from local structure. We select
as the metric MCR(tp), where tp is the time at which MCR

attains an inflection point in its caging plateau. This metric is
invariant with L and has been associated with cage size in 3D
systems.28,46,47,51,52 Thus, we define a normalized scaling
coefficient Bn = B/MCR(tp).
Along the isochores ϕ = 0.570 and ϕ = 0.600, Bn increases

monotonically as H is decreased (Figure 6(b)). This
monotonic increase in Bn is expected for a system transitioning
from 3D, for which Bn would be effectively zero due to the

Figure 5. First maximum in Γ × 103 (i.e., Γ(tLWF) × 103) as a function
of periodic side length L for (a) constant H = 3.00 and (b) constant ϕ
= 0.57. At constant H and L, Γ(tLWF) decreases with increasing ϕ as
the system becomes denser. Along an isochore, fluctuations initially
increase in magnitude with H as systems become more mobile.
Further increases in H, however, lead to a decrease in Γ(tLWF). The
solid lines are logarithmic fits Γ(tLWF) ≈ B log L to the data, and data
error bars are 95% confidence intervals. From these fits, the coefficient
B was extracted, which quantifies how strongly the MW fluctuation
magnitude varies with system size.
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absence of logarithmic scaling, to 2D LWFs.24−26 The
similarity in the values of Bn for the two ϕ at fixed confinement
suggests that normalization by the cage size indeed removes
much of the variation in B due to changes in local structure.
To further confirm this idea, we examine the H-dependence

of Bn in a system for which the local structure is nearly
independent of confinement. To this end, we simulated a series
of crystals of hexagonally closed-packed, monodisperse hard
spheres confined between two hard walls. The confined
crystals are generated such that the average wall−particle and
nearest-neighbor separations are 1.07σ̅, which ensures that
their local structure and dynamics do not vary significantly
with H. For the crystalline systems, the increase of Γ(tLWF)
with L is consistent with logarithmic scaling, indicating that
they exhibit LWFs. Both the elastic coefficient B and the
normalized coefficient Bn of the crystal systems increase
monotonically as H is decreased (Figure 6), as expected for a
3D-to-2D transition in LWFs, and are very close in magnitude.
Hence, we conclude that the growth of Γ(tLWF) with L is
indicative of MW fluctuations in quasi-2D confined super-
cooled liquids and that the nonmonotonic variation of B with
H in some samples arises from confinement-induced changes
in local structure.
State-Space Dependence. As the confinement length

scale H decreases, the nonlocal MW fluctuations are expected
to increasingly dominate particle motion. In unconfined 3D
geometries, directional correlations between the motions of
particles in supercooled liquids and those of their neighbors are
small on intermediate to long time scales.32 By contrast, in a
2D system with LWFs, the displacements of particles are highly
directionally correlated with those of the neighbors in their
surrounding cage.32,53 The transition from 3D- to 2D-like
dynamics can be characterized by examining the two-particle
correlation function Svec,i, which quantifies the degree of
directional correlation between the displacement of a central
particle and those of its surrounding neighbors.32,40,41 The
function Svec,i assumes values of 1 and −1 when the
displacement direction and magnitude of the central particle

Figure 6. (a) Non-normalized B and (b) normalized Bn scaling
coefficients for selected glassy isochores. For comparison, scaling
coefficients are also shown for crystalline systems of confined
hexagonally close-packed hard spheres. The average particle−particle
and particle−wall surface-to-surface separations for the crystalline
systems are 1.07σ̅ and constant for all H. The maximum in B for ϕ <
0.60 reflects the competition between strengthening LWFs and
variation in local structure. The Bn scaling isolates the growth of
LWFs relative to variation in local structure.

Figure 7. Contour maps of the coarse-grained directional displacement field Svec within the contact layers for systems with approximately the same
periodic side length L and cage-relative MSD MCR at the selected lag time but varying levels of confinement H. The constant L controls the
maximum possible wavelength of density fluctuations, and the constant MCR controls for variation in local structure. The state points are {ϕ, H} =
(a) {0.59, 13.00}, (b) {0.57, 4.00}, and (c) {0.55, 2.00}. Darkly colored regions in which Svec ≫ 0 exhibit displacements that are correlated in both
direction and magnitude. In brief, Svec is obtained by a sum of Gaussians centered at ri that smear the Svec,i of each particle. The maximum value for
Svec of 6 reflects the fact that only the Gaussians of the nearest neighbors contribute to the sum. To account for directional correlation alongside
significant mobility, the Gaussian variance and height are the MSD and Svec,i of particle i, respectively. The lag time of each displacement is t = 10
simulation time units, which is approximately the time for the first minimum in ΓCR. The extent of spatial correlations decreases with decreasing
confinement, i.e., the dark regions are smaller for larger H.
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i and all of its nearest neighbors are perfectly correlated and
anticorrelated, respectively. To isolate the effects of confine-
ment, we control for variations in local structure by examining
three state points with different H but similar L and equal MCR

at lag time t = 10 ≈ tLW.
A weakly confined system ({ϕ, H}={0.59, 13.00}) exhibits

modest correlations in directional displacement between
neighboring particles (Figure 7). As H is decreased, the
correlations become stronger (i.e., Svec increases), and the size
of regions of correlated displacement increases. Together,
these observations suggest that increasing 2D LWFs in
supercooled liquids leads to enhanced collective displacement
within regions of particles. This result is consistent with
experimental observations of larger displacement correlations
in colloids at a 2D oil−aqueous interface compared to 3D
systems.32

Lastly, to characterize how LWFs vary across the {ϕ, H}
state space, we calculated the elastic coefficient B for
supercooled liquids across a range of confinements spanning
bulk to quasi-2D systems (Figure 8). LWFs are detectable

across a broad range of H. As ϕ is increased from 0.550, state
points with measurable values of B (by our methods) extend to
larger values of H. This result is consistent with the expectation
that B (which is a measure of the elastic contributions to the
thermal vibrations) should increase as systems become denser
and hence more solid-like. Indeed, nonzero values of B are
observed up to the largest H studied (H = 14) for ϕ ≥ 0.580.
For ϕ < 0.580, our methods fail to detect LWFs beyond H ≈
10. We note, however, that 2D LWFs can be present and
influence dynamics within normal 2D liquids.27,54 Thus,
alternative approaches may reveal LWFs in more weakly
confined systems.
Along isochores with ϕ ≤ 0.590, B attains a maximum at an

intermediate value of H (as also seen in Figure 6). This value
of B signifies the maximum magnitude of the LWFs induced by
finite-size effects. The largest maximum in B occurs at the

lowest value of ϕ examined (i.e., in the most liquid-like
system). Further, because LWFs are detectable across a
narrower range as ϕ is decreased, the change in B with H is
steeper. Thus, finite-size effects arising from LWFs are most
pronounced for low-ϕ systems in the quasi-2D limit.
While writing this article, Ciamarra and collaborators

published a study in which they investigated the change in
dynamics for increasingly confined systems containing a 80:20
Kob-Andersen Lennard-Jones glass-forming mixture.21,55

Using periodic boundary conditions to avoid layering in the
confinement direction, they showed that LWFs affected the
relaxation dynamics of quasi-2D supercoooled liquid by
examining their dependence on lateral size, similar to what is
reported here. Further, they compared the time scales
associated with structural relaxation and the longest-wave-
length vibrational modes and thereby determined whether
systems exhibited 2D-like (in which dynamics were dominated
by LWFs) or 3D-like (in which dynamics were dominated by
structural relaxation) behavior. Interestingly, ref 55 also
examined the behavior of the Kob-Andersen mixture confined
in a slit geometry, but they did not report observing a
nonmonotonic dependence of MW fluctuations on H, as was
found in our study. This apparent discrepancy may be due to
the fact that the particle volume fraction was not held constant
as H was varied in their study nor were the effects of varying ϕ
systematically explored. Alternatively, it may arise from the use
of different model liquids. In either case, our study presents a
complementary analysis of a different model, in which the
effects of both particle volume fraction ϕ and the confinement
length scale H were systematically explored, revealing distinct
behavior in different regions of the parameter space.
Additionally, our analysis of LWFs in the quasi-2D systems

is based on global dynamical quantities calculated by averaging
over all of the particles in the systems. Nonetheless, the
dynamics of confined liquids may be heterogeneous and vary
as a function of distance from the bounding walls due to the
organization of particles into distinct layers.16 Thus, we
anticipate that additional insights into LWFs in these systems
can be obtained by examining the local dynamics in different
particle layers. We expect that the dense contact layers start to
dominate the average MSD as H is decreased. Indeed, our
preliminary examination of local dynamics indicates that long-
wavelength MW fluctuations may be enhanced in the dense
contact layers near the walls relative to those in the center of
the pores, but this topic merits further investigation in future
studies. Another promising avenue for future study is the
development of structural metrics that provide an improved
description of the changes in dynamics observed as the
confinement length scale is changed. There has been recent
success, for example, in identifying metrics that connect the
dynamics of 2D and quasi-2D liquids consisting of bidisperse,
nearly hard-sphere particles.56 Although these structural
descriptors do not appear to be directly extensible to
polydisperse systems in this study, we anticipate that similar
approaches may prove successful in developing metrics that
better account for the variations in the strength of the LWFs
with confining length scale than those presented here. A
second potential structural metric is the hexatic order
parameter, which has been shown to describe melting
processes57,58 and nanoparticle adsorption59 in two dimen-
sions. Our previous computational study showed that the in-
plane relaxation time increased exponentially with the
correlation length associated with the hexatic order parameter

Figure 8. Contour map of the unnormalized scaling coefficient B for
varying state point {ϕ, H}, where 0.550 ≤ ϕ ≤ 0.600 and 1.00 ≤ H ≤
14.00. Contours are generated by local cubic interpolation of B data,
and local re-entrance is an artifact of the interpolation. Translucent
black dots indicate locations of state points. Values of B have been
scaled by a factor of 103 for clarity. Nonmonotonic variation of B is
more evident for smaller ϕ. LWFs are not detectable via the first
maximum in Γ in the white regions of this diagram.
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for confinements whose widths were commensurate with the
average particle size.20 Thus, an interesting avenue for future
study is to examine if there is a connection between LWFs and
crystalline order.

■ CONCLUSIONS
Using event-driven molecular dynamics simulations, we
showed that confined supercooled liquids exhibit long-
wavelength MW fluctuations in the lateral directions parallel
to the confining walls, similar to those observed in 2D but not
3D systems. Competition between caging and MW fluctua-
tions as the liquids are increasingly confined leads to a
nonmonotonic dependence of the fluctuations on the confine-
ment length scale. Thus, the fluctuation amplitude can be
modulated by controlling the particle volume fraction and
extent of confinement. The results reveal that LWFs are
detectable for volume fractions below random close-packed as
long as the confinement is sufficiently strong (in Figure 8);
below ϕ < 0.58, bulk behavior appears for H > 14. Thus,
choosing H ≳ 20 appears to be sufficient to avoid LWFs for
systems far from random close packing (RCP). For ϕ closer to
RCP, however, we are able to detect LWFs even at widths up
to H = 14, the maximum examined in this study due to the
need to simulate systems with large L to determine the scaling
behavior. Although their strength appears to decrease as ϕ is
increased toward RCP, additional simulations closer to RCP
are needed to quantitatively test this speculation.
The detectability of MW fluctuations even in systems where

the confinement length scale is an order of magnitude larger
than the particle diameter suggests that they may influence the
properties of confined liquids in practical settings. Collective
displacements in quasi-2D paramagnetic colloids, for example,
were found to smear cage rearrangement and enhance particle
mobility53 and to accelerate viscoelastic relaxation and reduce
viscosity.29 Thus, improved understanding of dynamical
processes in quasi-2D systems may open new routes to tuning
the meso- and macroscopic properties of confined liquids.
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