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ABSTRACT
We use molecular simulation to probe the connection between local structure and the unusual re-
entrant dynamics observed for polydisperse hard-sphere liquids confined in thin slit pores. The local
structure is characterised by calculating 2-D bond-orientational order parameters associated with
square and hexatic order for particles in the layer adjacent to the confining walls. When the wall
separation is commensurate with the average particle size, the particles primarily exhibit local hex-
atic order, whereas local square order increases in prevalence for incommensurate geometries. The
relaxation time extracted from the ensemble-averaged mean-square displacement increases expo-
nentially with the static correlation length associated with hexatic local order in strongly confined
commensurate geometries, in agreementwith theoretical predictions for dynamical slowing. Square
order, by contrast, is not associated with a growing length scale for either commensurate or incom-
mensurate geometries, indicating that it is strongly geometrically frustrated. Our results suggest that
the influence of bond-orientational order on dynamical slowing may be altered by changing the
extent of confinement.
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1. Introduction

The underlying mechanisms responsible for the dra-
matic slowing of dynamics by many orders of magni-
tude upon compression or cooling of dense liquids are
incompletely understood and intensely debated [1,2].
Near the glass transition, particles are trapped in long-
lived cages formed by their neighbours, and are able
to relax only when the cages rearrange. Phenomeno-
logically, this relaxation is viewed as a two-step pro-
cess involving movement within and escape from the
cage formed by the neighbours [3–5]. This coupling to
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neighbour configuration suggests that the surrounding
structure is a strong determinant of glassy dynamics.
How the nature of the cages and their relaxations depend
on the structure of the liquid remain open questions. The
length scale and structural motifs associated with these
relaxations are thought to be non-local [6,7]. Indeed,
upon cooling or compressing the dynamics of liquids
become increasingly heterogeneous in space and time.
These spatial heterogeneities are thought to be connected
to a growing length scale over which dynamics are corre-
lated [8–10].
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Confining a liquid inside a thin geometry modifies
the dynamics and introduces a competing length scale
H, characterising the extent of confinement. [11–14].
For hard-sphere fluids under weak confinement (H �
5 particle diameters) the dynamics slow monotonically
as the confinement length scale is decreased [14,15].
In strongly-confined hard-sphere systems (H � 5 par-
ticle diameters), by contrast, the relaxation times can
depend non-monotonically on the separation between
the walls [15–20]. At high particle densities, this non-
monotonic behaviour can lead to multiple glass transi-
tions [17], as predicted by mode-coupling theory [16].
Notably, the glass transition line for polydisperse hard
spheres exhibits oscillations whose period is of the order
of the particle diameter [17], strongly intimating that the
competition between layering and local packing drives
the unusual dynamical re-entrance observed in these
systems.

For certain glass-forming systems, bond-orientational
order has been shown to be connected to dynamics.
Numerical simulations of 2-D polydisperse hard disks,
for example, reveal that transient clusters of highly-
ordered particles are correlated with dynamical het-
erogeneity [21]. In several systems, the clusters associ-
ated with such medium-range crystalline order (MRCO)
are hexatically-ordered in 2-D [22,23] or hexagonally-
ordered in 3-D [24–26]. Whereas the static and dynamic
length scales have been shown to grow similarly for 2-
D glasses with MRCO, this behaviour is not observed
in other 2-D glass formers [27,28]. In strongly confined
systems, MRCO is enhanced within the layers of parti-
cles that form near the confining walls [29]. When the
confinement length scale is commensurate with particle
size, particles within the layers typically adopt hexatic
order parallel to the walls. By contrast, incommensu-
rate geometries tend to promote square ordering [30–32].
While these earlier studies show that MRCO is amplified
by strong confinement, they have not explored its link to
dynamics.

In this study, we use molecular dynamics (MD) sim-
ulations to investigate the connection between local
structural ordering and the unusual re-entrant dynamics
observed for polydisperse hard-sphere liquids confined
in small slit pores. Despite the polydisperse nature of
these systems, the particles in the contact layers adjacent
to the confining walls exhibit pronounced local order-
ing, whose symmetry changes as the wall separation
becomes incommensurate with the average particle size.
Particles in commensurate geometries largely exhibit
hexatic local order, whereas square local order is also
observed in systems where the confinement length scale
is incommensurate with particle size. The static correla-
tion length associated with hexatic local order is found

to increase logarithmically with the relaxation time, in
agreement with predictions from 2-D random first-order
theory [33] and models based on locally-favoured struc-
tures [34]. Square ordering, by contrast, is short-ranged
and not associated with a growing length scale even
for incommensurately-packed systems in which square
ordering is most prevalent. This observation suggests
that square order is strongly geometrically frustrated for
all levels of confinement studied here. For incommen-
surate geometries, neither hexatic nor square ordering
are associated with a growing length scale. This strik-
ing result indicates that the connection between bond-
orientational order and dynamical slowing can be altered
by varying confinement.

2. Methods

Event-drivenMD simulations were performed to investi-
gate the behaviour of polydisperse hard-spheres confined
in slit-shaped pores consisting of two parallel walls sepa-
rated by distance H along the z-axis of the cell. Periodic
boundary conditions were imposed along the x- and y-
axes parallel to the walls to model an infinite slab geom-
etry. Each of the N = 10,976 particles in the system was
assigned unitmass and a hard-core diameter σi randomly
sampled from aGaussian distribution. The average of the
distribution was set to σ̄ = 1 and the standard deviation
s was chosen to modulate particle polydispersity (PDI).
Following convention, we adopt units in which Boltz-
mann’s constant kB = 1, and σ̄ and t = σ̄ (m/kBT)1/2 are
the fundamental measures of length and time, respec-
tively [17,35]. All simulations were performed in the
microcanonical (NVE) ensemble, with initial particle
momenta randomly drawn from theMaxwell-Boltzmann
distribution with specified temperature T = 1.

We investigated the static and dynamic properties of
the confined hard-spheres at various state points spec-
ified by {s,φ,H}, where φ is the particle volume frac-
tion. For PDI s = 0.15, we examined ranges 0.47 ≤ φ ≤
0.51 and 2.00 ≤ H ≤ 3.00. For s = 0.05, we considered
2.00 ≤ H ≤ 3.00 at a single volume fraction φ = 0.51.
The systems were prepared by incrementally compress-
ing an initial confined liquid-like configuration at φ =
0.45 to achieve the final H and φ. The compression steps
were performed in increments of �φ = 0.01, following
each step by a short MD simulation (10t) at constant
φ to relax compression-induced stresses. After compres-
sion, the systems were equilibrated until their properties
became invariant with sample age. The sample age was
measured as the waiting time tw, defined as the time
elapsed since the end of the final compression step.

For all systems, we computed the mean 2-D Mer-
min order parameters averaged over particles in the wall
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contact layers [36]

ψl = 1
Nwall

Nwall∑

j=1
ψ

j
l (1)

where

ψ
j
l = 1

nj

nj∑

k=1

eilθjk , (2)

Nwall is the number of particles in the wall contact lay-
ers, nj is the number of nearest neighbours of particle
j, i = √−1, l is a positive integer indicating the orien-
tational symmetry, θjk = cos−1 [ı̂ · rjk|rjk|−1] is the angle
between the x-axis and the in-plane interparticle sepa-
ration vector rjk = rj − rk, ı̂ is the unit vector along the
x-axis, and rj = {xj, yj} is the in-plane particle position
vector for particle j. The contact layers were identified by
computing the density profile along the z-axis perpendic-
ular to the walls

ρ(z) = 1
N�z

N∑

j=1
δ(z − zj), (3)

where zj is the out-of-plane particle coordinate and �z
is the histogram tbin width. Particles with z-coordinates
lying between the first two minima in ρ(z) nearest to
each wall were defined as belonging to the contact lay-
ers. Equation (2) was evaluated by taking the sum over
the nearest neighbours of the central particle j that lie
within the same layer and a cutoff separation distance
of r = 1.34, which approximately encompasses the first
coordination shell.

We monitored ψ4 and ψ6, which are sensitive to
square and hexatic ordering, respectively. The order
parameter ψ4 = 1 for perfect long-range square order-
ing, whereas ψ6 = 1 for systems with perfect long-
range hexatic ordering. For disordered systems, ψ4 → 0
and ψ6 → 0 as N → ∞, but they take on small pos-
itive values near zero in finite systems due to fluctu-
ations. Systems with appreciable square and/or hexatic
ordering (i.e. ψ4 ≥ 0.05 and/or ψ6 ≥ 0.05) were con-
sidered equilibrated when the Mermin order parame-
ters became invariant with sample age (within statistical
uncertainty). This invariance was observed for tw rang-
ing from20,000–100,000. For the remaining (disordered)
systems, equilibration was monitored by computing the
pore-averaged mean-square displacement (MSD)

�r2(t) = 1
N

N∑

k=1

(r2k(t)− r2k(0))
2 (4)

as a function of sample age. The systems were considered
equilibrated when the MSDs computed over different
time periods became statistically invariant with respect

to sample age. This criterion was met for tw ranging from
200–30,000 simulation time units, depending on the state
conditions.

Following equilibration, the simulations were
extended to generate a production phase, during which
trajectories were saved for subsequent analysis. The dura-
tion of the production phase was typically a factor of
10 longer than the equilibration period. Statistical prop-
erties at each state point were computed by averaging
overNs = 5, 10, or 20 independent simulations, depend-
ing on the PDI, each initiated from a different particle
configuration prepared using the procedures described
above.

The correlation lengths ξl associated with l-fold sym-
metry were estimated by computing the in-plane spatial
correlation functions for the 2-D Mermin parameters

gl(r) = L2

2πr�rNwall(Nwall − 1)

∑

j�=k

δ(r − |rjk|)ψ j
lψ

k∗
l

(5)
where L is the length of the simulation cell in the
direction parallel to the walls, �r is the histogram bin
width, and ψ j

lψ
k∗
l = Re (ψ j

l )Re (ψ
k
l )+ Im (ψ j

l )Im (ψ
k
l ).

Equation (5) was evaluated for l = 4, 6 to analyse the
extent of square and hexatic ordering in the contact lay-
ers, respectively. The correlation lengths for both symme-
tries were extracted by fitting an exponential

f (r) = A exp[−2r/ξl] (6)

to the envelope of gl(r)/g(r), where g(r) is the in-
plane radial distribution function computed by eval-
uating Equation (5) with the product ψ j

lψ
k∗
l omitted

[37,38]. An exponential fitting functionwas used because
the usual Ornstein-Zernike (OZ) expression, which pre-
dicts power-law decay r−n, is derived for isotropic sys-
tems, whereas the confined systems studied here are
anisotropic [39].

To characterise the relaxation dynamics, we calculated
S(s)00 (q, t), which is the self-part of the first component of
the matrix

Sμν(q, t) = 1
N

〈ρμ(q, t)∗ρν(q, 0)〉 (7)

indexed by non-negative integers μ, ν. Equation (7) is
a generalisation of the intermediate scattering function
to systems confined in one dimension, with associated
density fluctuations

ρμ(q, t) =
N∑

j=1
exp [iQμzj(t)] eiq·rj(t). (8)

Here, q = {qx, qy} is the wavevector with norm q, Qμ =
2πμH−1 is a discrete wavenumber, and rj = {xj, yj} and
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zj are the in- and out-of-plane particle coordinates,
respectively.

3. Results and discussion

We first examine the dynamics of strongly confined liq-
uids parallel to the direction of confinement through the
intermediate scattering function S(s)00 (qxyσ̄ = 3.3, t) at the
wave-vector corresponding to a length scale of approx-
imately two particle diameters (Figure 1(a)). For wall
separations 2 ≤ H ≤ 3, S(s)00 (qxyσ̄ = 3.3, t) fully decays to
zero on time scales accessible with simulation. We define
the in-plane, pore-averaged relaxation time scale τxy via
S(s)00 (qxyσ̄ = 3.3, τxy) = 1/e. The out-of-plane dynamics
also fully relax, but the terminal relaxations are not dif-
fusive due to the confinement imposed along the this
direction and thus are not discussed further.

Figure 1. (a) Pore-averaged self-intermediate scattering func-
tions S(s)00 (qxyσ̄ = 3.3, t) in the direction parallel to the confining
walls for a systemwith {s,φ} = {0.15, 0.50} for different wall sep-
arations H. (b) Inverse relaxation time τ−1

xy in the direction parallel
to the walls as a function of H for systems with s = 0.15 and dif-
ferent volume fractions φ. The relaxation times are defined via
S(s)00 (qxyσ̄ = 3.3, τxy) = 1/e.

The in-plane relaxation dynamics depend non-
monotonically on the wall separation H (Figure 1(b)).
At a volume fraction of φ = 0.47, the inverse relaxation
time τ−1

xy depends only weakly on H. Near H ≈ 2.1,
τ−1
xy exhibits a weak local maximum, and near H ≈ 2.3
it exhibits a modest local minimum. Thus, highly con-
fined, disperse suspensions exhibit re-entrant dynamics.
These local extrema become more pronounced as φ is
increased to 0.51. Our results are qualitatively similar to
those of Ref. [17], which reported re-entrant diffusivi-
ties, extracted from the long-time limit of the ensemble-
averaged mean-square displacements, for strongly con-
fined suspensions of polydisperse hard spheres.

To gain insight into the changes in the underlying
microstructure that are responsible for these unusual re-
entrant dynamics, we first examine the number density
profiles along the direction perpendicular to the walls,
ρ(z). The evolution of ρ(z) with increasing φ varies
markedly with the wall separationH. ForH = 2.20, ρ(z)
does not strongly depend upon φ (Figure 2(a)). Two lay-
ers form near the walls in all systems, and ρ(z) is slightly
enhanced near the pore centre at z = 0 as φ is increased.
Increasing the wall separation slightly to H = 2.34 leads
to a stronger enhancement in density near the pore cen-
tre with increasing φ (Figure 2(b)). Systems confined at
H = 2.50, however, show pronounced variation in ρ(z)
with φ (Figure 2(c)). Three layers form in these systems.
Further, as φ is increased the local maxima and minima
respectively increase and decrease in height, indicating
that layering becomes more pronounced. An additional
increase in the wall separation, toH = 3.00, reveals three
layers whose density profiles do not strongly vary with φ
(Figure 2(d)), as for H = 2.00.

The evolution in ρ(z) with H indicates a change in
the ordering of particle layers within the pore. For com-
mensuratewall separationsH, the ratioH/σ̄ takes integer
values and particles organise into close-packed layers
[31,40]. Incommensurate wall separations are those for
which H/σ̄ takes on non-integer values, disrupting the
close-packed layers. For our systems, the development
of incommensurate packing (between H = 2.20 and
H = 2.34, Figure 2(a,b)) coincides with the minimum
in τ−1

xy (Figure 1). The development of incommensurate
packing was observed to correlate with slow dynamics
and larger nonergodicity parameters in Ref. [41], sug-
gesting that motion in the confining plane is obstructed
by such packings. For H = 2.20, however, relaxation
times increasemarkedly without the formation of incom-
mensurate layers, suggesting additional mechanisms for
dynamical slowing.

To explore other mechanisms leading to dynami-
cal slowing, we examine the local structure of particles
in layers. Previous studies of monodispersed particles
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Figure 2. Number density profiles ρ(z) in the direction perpen-
dicular to the confining walls for (a) H = 2.20, (b) H = 2.34, (c)
H = 2.50, and (d) H = 3.00 and volume fractions φ denoted in
the legend. Each system has a polydispersity of s = 0.15.

[30–32,42] have shown that fully developed incom-
mensurate packings for nearly half-integer values of
H/σ̄ are accompanied by a change in the in-plane
local crystal structure. Inmonodisperse systems, increas-
ing the wall separation from 2 to 3 particle diameters
at φ ≈ 0.50 drives a transition in the in-plane order
from 2� → 3� → 3�, where � and � indicate hexatic
and square order, and the integers indicate the num-
ber of distinct particle layers [32]. Although our sys-
tems are polydisperse, we hypothesise that the change in

commensurability in our system is also accompanied by
a change in the the local structure of the particles.

To scrutinise the evolution of local structure in our
systems, we calculate ψ j

4 and ψ
j
6 (Equation (2)) for par-

ticles within the layers nearest to the wall (Figure 3(a)).
The parameters ψ j

4 and ψ
j
6 are local variants of the spa-

tially averaged 2-D Mermin parameters (Equation (1))
that characterise the extent of square and hexatic order
in the coordination environments of individual particles,
respectively. We first examine a low-dispersity system
(PDI 5%, s = 0.05) with φ = 0.51, whose structure is
expected to closely mimic that of confinedmonodisperse
spheres. The phase behaviour of unconfined bulk systems
was found to be qualitatively similar to themonodisperse
limit below a threshold particle polydispersity [43,44].
This threshold is larger for confined than unconfined par-
ticles [17,35]. In our confined systems, increasing thewall
separation from H = 2.20 to 3.00 leads to changes in
the predominant local order in the wall contact layers
(Figure 3(b–e)). ForH = 2.20 particles primarily exhibit
hexatic local order. ForH = 2.34 local hexatic and square
order coexist, whereas for H = 2.50 local square order is
dominant. Finally, atH = 3.00 the particles near the wall
again exhibit primarily hexatic local order. These obser-
vations indicate that the extent of hexatic local ordering
is re-entrant. Hexatic local order is more prevalent in
strongly confined systems for which packing is com-
mensurate. Square ordering becomes more prevalent in
incommensurate packings as a mechanism by which par-
ticles resolve frustration in ordering, forming BCC-like
local arrangements in the direction perpendicular to the
pore walls.

The transition from hexatic to square local order
observed in our simulations with s = 0.05 is consistent
with the 2� → 3� transition observed for monodis-
perse hard spheres over this range of wall separations
[32]. Further, the coexistence of square and hexatic
motifs in H = 2.34 is analogous to two-phase coexis-
tence between 2� and 3� observed from the free energy
calculations of Ref. [32]. Indeed, despite the modest dis-
persity, all systems with s = 0.05 fully crystallize on the
simulated time scales.

Re-entrance in the extent of hexatic order is also
observed with increasing wall separation when the dis-
persity is increased to 15% (Figure 3(f–i)). The frac-
tion of particles with locally square order increases as
H is increased from 2.00 to 2.50, and then decreases
for larger wall separations. The size of ordered regions
is smaller, however, in higher-dispersity than in lower-
dispersity systems. In contrast to the 5% dispersity sys-
tem at H = 2.50, large regions of locally square order
are not found in the 15% dispersity sample. This result
is consistent with earlier observations that dispersity
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Figure 3. Renderings of systems with a particle volume fraction of φ = 0.51 in the direction parallel (a) and perpendicular (b-i) to the
confining walls. Particles within the contact layers adjacent to the walls are coloured according to the magnitudes of the local Mermin
order parameters (Equation (2)) with dark blue and dark red indicatingψ6 = 1 andψ4 = 1, respectively. Particles withψ6 ≈ ψ4 ≈ 0, or
not within the wall contact layers, are coloured white. (a) Rendering of system with {s,φ,H} = {0.15, 0.51, 2.50} in the direction parallel
to the confining walls. The walls are depicted as gray slabs. Renderings in the direction perpendicular to the walls (b-e) are for systems
with {s,φ} = {0.05, 0.51} and (b) H = 2.20, (c) H = 2.34, (d) H = 2.50, and (e) H = 3.00. Renderings (f-i) are for systems with {s,φ} =
{0.15, 0.51} and (f ) H = 2.20, (g) H = 2.34, (h) H = 2.50, and (i) H = 3.00.

reduces the length scale associated with MRCO [29].
Collectively, our results indicate that these length scales
are strongly sensitive to the extent of confinement in
polydisperse systems.

To extract the characteristic length scales associated
with hexatic and square local order, we calculate the cor-
relation functions g6(r)/g(r) and g4(r)/g(r), respectively
(Figure 4). The envelope of each correlation function
can be fit using a decaying exponential (Equation (6)) to
extract static correlation lengths associated with square
and hexatic order (ξ4 and ξ6, respectively). The hexatic
length scale ξ6 grows steeply with φ for 2.00 ≤ H ≤ 2.34
and 2.70 ≤ H ≤ 3.00, the systems with commensurate
packing (Figure 5(a)). For systems with strongly incom-
mensurate packing (H = 2.50 and 2.55), however, ξ6 is
nearly independent of φ. For these systems, particles of
average size cannot organise into hexagonal layers par-
allel to the confining walls at these high volume frac-
tions [31,32]. Thus, hexatic ordering is frustrated by the
competition between in-plane and out-of-plane pack-
ing within incommensurately-packed systems. In addi-
tion, ξ6 exhibits re-entrance as the wall separation H is
increased for all φ. This structural re-entrance follows

the dynamic re-entrance observed in our simulations
(Figure 1) and in earlier studies [17,20].

By contrast, the square correlation length ξ4 does not
grow strongly with φ for anyH (Figure 5(b)). The preva-
lence of square ordering increases with φ for H = 2.50
and H = 2.55, but this behaviour is not associated with
an increase in the static correlation length ξ4. Instead, it
manifests as an increase in the exponential prefactor A
(Equation (6)). In the conventional OZ formalism, A is a
local analytic function unrelated to the static correlation
length [39]. This behaviour indicates that square order-
ing is primarily local. The local nature of square ordering
likely arises from its greater susceptibility to frustration
[21,25], which has been attributed to mechanical insta-
bilities associated with this type of order in confined
hard-spheres [45].

The relatively small magnitudes of ξ6 and ξ4 for
H = 2.50 compared to the values at otherH indicate that
square and hexatic ordering compete in these systems.
Examination of the local order parameters for H = 2.50
provides additional support for this idea. The absence of
well-defined hexatic and square regions indicates that no
one type of order is dominant and that the development
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Figure 4. Representative hexatic g6(r)/g(r) and square
g4(r)/g(r) correlation functions for systems with s = 0.15 and
volume fractions φ denoted in the legend. (a) Hexatic correlation
function g6(r)/g(r) for H = 2.05. (b) Square correlation function
g4(r)/g(r) for H = 2.50. Dashed lines are error-weighted fits of
the peaks of the correlation functions to decaying exponential
functions (Equation (6)). The illustration in each panel depicts the
type of bond-orientational order characterised by the correlation
function.

of local crystalline motifs is frustrated (Figure 3(h)).
The relative dominance of square ordering for H = 2.50
at s = 0.05 (Figure 3(d)) suggests that increasing poly-
dispersity facilitates competition between domains with
different local order, which has been observed for bulk
systems [43,46].

To directly assess the role of hexatic ordering on the
slowing of dynamics, we examine the dependence of the
in-plane relaxation time τxy on ξ6. For wall separations
that lead to approximately commensurate packing (H =
2.00, 2.34, and 3.00), ξ6 increases logarithmically with τxy
(Figure 6). A similar dependence of the relaxation time
on the hexatic length scale was also observed in simula-
tions of 2-D polydisperse particle, binary metal, driven
granular, and binary spin systems exhibiting MRCO
[21,23,25]. This behaviour is consistentwith scaling argu-
ments for the relaxation time derived from 2-D random

Figure 5. Correlation length scales associated with (a) ξ6 and (b)
ξ4 for particles within the contact layers adjacent to the walls as
a function of H. The systems have polydispersity s = 0.15 and
volume fractions φ indicated in the legend. Error bars reflect
uncertainties in ξl from fits of the peaks of gl(r)/g(r) to decaying
exponential functions (Equation (6)).

first-order theory (RFOT) [33]. The RFOT framework
predicts that, below a threshold temperature (or above a
threshold density, for hard spheres), a glassy liquid can be
described as a mosaic of distinct domains that rearrange
cooperatively and are separated by well-defined inter-
faces [1,33]. In this low-temperature (or high-density)
regime, the relaxation time increases exponentially with
the domain size. For the hexatic ordering in our confined
systems, the predicted scaling would imply that τxy =
B exp (Cξl), where B and C are positive constants, which
is consistent with our simulation data. Similar scaling is
also predicted by the locally-favoured structure model
for vitrification of Ref. [34]. In addition to ξ4 and ξ6,
several other structural metrics were also analysed, but
were found to exhibit only weak correlations with τxy for
the systems examined here (see Supporting Information).
These comparisons collectively suggest dynamical slow-
ing in quasi-2-D systems with commensurate layering is
driven by hexatic ordering.
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Figure 6. Correlation length scales associated with (a) ξ6 and (b)
ξ4 for particles within the contact layers adjacent to the walls as
a function of the in-plane relaxation time τxy . The systems have
polydispersity s = 0.15 and wall separations H indicated in the
legend. Solid lines are fits to the relation τxy = B exp (Cξl), where
B and C are positive constants and ξl is either ξ4 or ξ6.

By contrast, ξ6 is nearly independent of τxy for
H = 2.50, which exhibits incommensurate packing
(Figure 6(a)). For this system, hexatic ordering does not
appear to drive dynamical slowing, suggesting a differ-
ent crystalline symmetry or mechanism is responsible.
Because local square order is enhanced in this system
(Figure 3(h)), we also examine the scaling of ξ4 with
τxy. Interestingly, ξ4 is smaller for H = 2.50 compared
to H = 2.00, 2.34, and 3.00, which likely occurs due to
greater disorder in the incommensurate packing for this
wall separation. Nonetheless, we find that ξ4 does not
significantly increase with τxy for any wall separation
(Figure 6(b)), suggesting square ordering is not strongly
associated with dynamical slowing. Our results show that
the relaxation time increases logarithmitically with the
static correlation length associated with hexatic MRCO
in commensurately-packed systems withH � 2.34. Sim-
ilar behaviour is not observed for the incommensurate
system with H ≈ 2.50. Whether dynamical slowing in

this system is associated with a growing static correla-
tion length or a different underlying physical mechanism
remains an open question.

4. Conclusions

In this study, we investigated the connection between
local structural ordering and the unusual re-entrant
dynamics observed for polydisperse hard-sphere liquids
confined in small slit pores. At low polydispersity, hexatic
and square local order dominate in systems with com-
mensurate and incommensurate packings, respectively.
At higher polydispersities, the competition between hex-
atic, square, and liquid-like order is more pronounced,
consistent with the reduction in MRCO observed in
unconfined liquids as dispersity is increased.

For commensurate packings withH � 2.34, we found
that the static correlation length associated with local
hexatic order increased logarithmically with the relax-
ation time scale, in agreement with the prediction from
2-D randomfirst-order theory. By contrast, square order-
ing was short-ranged and was not associated with a
growing length scale. The short-ranged square order-
ing and lack of well-defined ordered domains indicated
that incommensurately-packed systems were more geo-
metrically frustrated than commensurately-packed sys-
tems. For H = 2.50, the growth of MRCO was frus-
trated, yet dynamical slowing with increasing φ per-
sisted. Together, these results suggest that a growing
static length scale associated with bond orientational
order can contribute to dynamical slowing in strongly-
confined hard-spheres. Moreover, they show that the
influence of bond-orientational order on dynamical
slowing may be altered by slight changes in the extent of
confinement.

Our analysis revealed a growing length scale asso-
ciated with hexatic local order for systems with com-
mensurate packing. For the incommensurately-packed,
strongly frustrated systems, a growing length scale has
yet to be identified. It is of interest to ask whether
other dynamic and static length scales [28], such as the
dynamical correlation length [8] or point-to-set length
scale [47,48], and/or the structural entropy [29,49] also
exhibit re-entrance that correlates with the dynamics.
Further, the connection between local structure and
dynamics in polydisperse liquids may be affected by
the nature of the particle size distribution (e.g. Gaus-
sian versus Pareto-distributed particle sizes [50,51]) [38].
Future investigations in these areas are expected to pro-
vide additional insight into how the mechanisms for
dynamical slowing differ in 2-D, quasi-2-D, and 3-D
systems.
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