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Differential dynamic microscopy of bidisperse colloidal
suspensions
Mohammad S. Safari1, Ryan Poling-Skutvik1, Peter G. Vekilov1 and Jacinta C. Conrad 1

Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as
aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with
equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1
μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles
at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller
wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles
induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position
of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental
requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light
scattering to characterize samples with complex dynamics.
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INTRODUCTION
Microgravity provides a unique environment in which to
investigate the physics of transport processes such as diffusion,
convection, and conduction. These processes affect structure in
systems featuring sub-microscale constituents, including bacterial
biofilms,1, 2 protein crystals,3, 4 and complex fluids.5 Monitoring
dynamics on these length scales in microgravity is expected to
generate fundamental insight into the physics controlling
structural evolution. One traditional method for characterizing
dynamics at the microscale, dynamic light scattering (DLS),6 is
already available on the International Space Station (ISS)7 but is
restricted by the detector frame rate to characterize slow motions.
An intriguing alternative is provided by recent enhancements to
the Light Microscopy Module (LMM) on the ISS, which increased
the time resolution of image acquisition and imparted confocal
imaging capabilities. These advances make it possible to access
faster dynamics across a broad range of samples but require
methods to obtain dynamics from microscopy time series images.
For microscale structures that can be directly visualized on an

optical microscope, dynamics can be extracted from a time-series
of microscopy images via image-processing algorithms. The
numerical aperture on a standard light microscope, however,
limits the size of resolvable structures to typically greater than 150
nm using the smallest feasible wavelength of light. Although
advanced super-resolution microscopy methods can in principle
lower this size limit significantly,8 low time resolution and
stringent instrumentation requirements limit their immediate
adoption on the ISS. Hence there remains a need for methods
that can be readily implemented on a standard microscope with
relatively simple equipment, compatible with the strict demands
of the space environment.
Differential dynamic microscopy (DDM),9 an extension of

heterodyne near-field scattering10 and one of an emerging family

of digital Fourier techniques,11 is a flexible, powerful, and readily-
implemented method to probe microscale dynamics. In DDM, the
microscale dynamics of a sample are extracted from the
decorrelation of intensity fluctuations evaluated from a time
series of difference images.12 This method has two key
advantages: first, it has minimal instrumentation requirements,
and, second, it can access smaller wavevectors and hence larger
length scales than conventional DLS setups. Thus, DDM has been
used to characterize the dynamics of dispersed nanoparticles13–15

and bacteria,16, 17 as well as colloidal18 and protein19 condensates.
Further, DDM has been extended to imaging modes beyond
brightfield, including fluorescence,12 confocal,20 and darkfield21

microscopy. Hence this method offers new flexibility and
capability to investigate complex dynamic phenomena using
microscopy.
The simple instrumental requirements of DDM allow it to be

implemented on the ISS to enable novel probes of dynamics in
microgravity. As one example, gravity significantly alters dynamic
processes controlled by a single mobile species, including colloidal
aggregation and phase separation22 or multiscale self-assembly.23

In suspensions containing mobile constituents of varying size and
mobility, gravity may play an even more significant role. Indeed,
many physical processes are driven by differences in the dynamics
of distinct constituents, such as suspension phase behavior,24–28

flow-induced margination,29, 30 or the self-organization of active
matter.31–34 Studies of these processes in microgravity are
expected to elucidate their complex physics; the varied nature
of these systems requires a powerful, flexible, and easily-
implementable method, such as DDM. Although DDM has been
extensively applied to systems featuring relatively simple
dynamics described by a single characteristic relaxation time
and to mixtures with Gaussian distribution of relaxation times
such as protein aggregates, its application to systems featuring
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nonuniform complex dynamics has been limited to samples with
multi-step relaxations.35, 36

Here, we demonstrate a new application of DDM: the ability to
resolve dynamics in a complex mixture containing two sizes of
particles, using equipment comparable to that in the LMM on the
ISS. We formulate dilute mixtures of polystyrene particles of radius
50 nm and 1 micron at different ratios of the large-to-small
fraction at modest total volume fractions of ϕ ~ 10−3, at which
both species freely diffuse. The 50 nm particles are too small to be
resolved using standard optical methods. Using DLS and DDM, we
measure the particle diffusivities in the mixtures. Whereas DLS is
not sufficiently sensitive to resolve the dynamics of both species
at these concentrations, DDM successfully measures the diffusiv-
ities of both large and small particles. The enhanced sensitivity of
DDM derives from the preferential forward scattering of large
objects. The scattered light from the large particles generates
interference patterns that affect the amplitude of the dynamic
correlation function. We show that this amplitude is non-
monotonic and corresponds to the interference pattern, and thus
may be used to characterize their average axial position. We
anticipate that this approach can be applied to time series of
images acquired on the LMM and in other space experiments—
enhancing the time resolution and providing new insights into
microscale and nanoscale dynamics in microgravity.

RESULTS AND DISCUSSION
Dynamic light scattering
As a control experiment, we measured the diffusivities of particles
of radius 50 nm and 1 µm, respectively, using DLS. In suspensions
containing particles of uniform size, the intermediate scattering
function f(q,t) could be fitted to a single exponential,

f ðq; tÞ ¼ exp � t
τS

� �
(1)

where the time scale τS was related to the particle diffusivity via
DS = 1/q2τS. The measured diffusivities of the small (4.3 ± 0.1 μm2

s−1) and large (0.20 ± 0.02 μm2 s−1) particles were in good agree-
ment with the diffusivities predicted from the Stokes–Einstein
equation using the nominal radii (4.3 μm2 s−1 and 0.21 μm2 s−1).
To test the ability of DLS to measure dynamics of both species

in a bidisperse mixture, we formulated samples containing a
constant volume fraction of small particles, ϕS = 10−3, and added
large particles at various concentrations to obtain volume fraction
ratios of r = ϕL/ϕS = 0.03, 0.01, and 0.003. The intermediate
scattering functions f(q,t), measured at three scattering angles,
exhibited distinct shapes depending on the concentration of large
particles. At the highest concentration of large particles (r = 0.03)
and the lowest scattering wavevector (q = 6.8 µm−1), f(q,t)
exhibited a second shoulder at long lag times (Fig. 1a); by
contrast, no second shoulder was apparent at higher angles (e.g.,
for q = 18.7 µm−1 in Fig. 1a) or at lower concentrations of large
particles (e.g., at q = 6.8 µm−1 and r = 0.003 in Fig. 1c).
For bidisperse suspensions, the choice of an appropriate fitting

model was determined by the scattering properties of the
particles. The large particles used in these experiments were Mie
scatterers37: the Mie parameter x for a particle of radius aL = 1 µm
interacting with light of wavelength λ = 632.8 nm in water
(refractive index n = 1.33) was x = 2πaLn/λ = 13.2, much larger than
the Rayleigh threshold38 x = 1. The Mie parameter for the small
particles was x = 0.66, slightly below this threshold. In the Mie
regime, the scattering intensity is anisotropic with preferential
forward scattering at low angles. Therefore, the contribution of
both particles to the intermediate scattering function was angle-
dependent and concentration-dependent. To capture these
physics, we used two fitting forms: a single exponential decay
when the scattering from small particles dominated and a double

exponential decay when scattering from both populations was
significant. For scattering experiments at r = 0.003 and 0.01, the
correlation functions at all three scattering angles were fitted with
a single exponential function (Eq. 1). The diffusivities calculated
from the fitted time scale, DS = 1/q2τS, reflected the rate of
diffusion of small particles over the length scale 2π/q and were in
good agreement with that from the unary control experiment
(Table 1). At a higher large-particle ratio r = 0.03, the intermediate
correlation function exhibited a second shoulder at the lowest
wavevector (q = 6.8 μm−1) indicative of two populations of
diffusing particles. For r = 0.03, we fitted the intermediate
correlation functions at q = 6.8 μm−1 to the sum of two
exponential functions

f ðq; tÞ ¼ fS exp � t
τS

� �
þ fL exp � t

τL

� �
(2)

where τS and τL are the characteristic diffusion times of 50 nm and
1 µm particles, respectively, and fS and fL = 1−fS are proportional to
the amplitude of the scattered signal produced by each particle
population. Again, the diffusion coefficient for each particle
species was extracted from its characteristic diffusion time via
DS,L = 1/q2τS,L. The calculated diffusivities were larger than but
comparable to those from the unary control measurements
(Table 1); DL, in particular, was significantly larger. The inability
to accurately detect the large particles across the accessible range
of wavevectors prohibited the use of DLS to characterize minority-
large bidisperse suspensions at low volume fractions. Hence, we
explored alternate methods for characterizing dynamics in these
samples.

Differential dynamic microscopy
To evaluate the sensitivity of DDM to distinguish particles of two
different sizes, we performed DDM measurements on the same
series of samples. In the DDM theory, the structure function Δ(q;t)
is related to the intermediate scattering function f(q,t) via

Δ q; tð Þ ¼ A qð Þ 1� f ðq; tÞð Þ þ B qð Þ (3)

where A(q) depends on the optical transfer function of the
imaging system and on the scattering properties of objects, and B
(q) captures any noise introduced into the system.9, 12 For a
population of monodisperse scatterers at low concentration, f(q,t)
is commonly fit to a single exponential decay (Eq. 1). In samples
with more complex dynamics, such as those featuring multiple
relaxation timescales,35, 36 a single exponential decay cannot be
applied.
Here, our goal was to determine the extent to which the sizes of

particles in a bidisperse mixture could be resolved. Because DDM
accesses a lower range of wavevectors than our DLS setup, the
scattering intensity from the large particles is more pronounced
than in DLS (Fig. 1d). Thus, we expected to observe two decays in
the DDM signal for bidisperse mixtures, corresponding to the rate
of diffusion for each particle size. At the highest concentration of
large particles and at the lowest wavevectors, the signal from the
large particles dominates; the small particles still contribute to the
intensity at lower volume fraction ratios and higher wavevectors.
To capture the contributions from both particles, we globally fit all
relaxations across the wavevector range to the sum of two single-
exponential functions with a weighting function fS(q) to describe
the relative contribution from each particle population. This fitting
form has five fitting parameters at each wavevector: τS(q), τL(q), A
(q), B(q), and fS(q). To reduce the number of independent fitting
parameters, we noted that the ratio of the decay rates of the large
and small particles should be constant across the range of
wavevectors, even as the relative scattering contribution from
each was modulated by the anisotropic scattering of the particles.
For bidisperse mixtures, we therefore implemented a global fitting

Differential dynamic microscopy methods
MS Safari et al.

2

npj Microgravity (2017)  21 Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA



process and fit to the structure function

Δ q; tð Þ ¼

A qð Þ 1� fS qð Þ exp � t
τLðqÞ=fr

� �
þ fL qð Þ exp � t

τL qð Þ
� �� �� �

þ BðqÞ
(4)

where τL(q) is the relaxation time of 1 µm particles at the
wavevector q; the weighting functions fS(q) and fL(q) = 1−fS(q)
describe the contribution of small (50 nm) and large (1 μm)
particles, respectively, to the scattering intensity at q; and fr is the
ratio of relaxation times of large and small particles, which is
independent of q and hence was globally fit. Although the ratio fr
is known for these particles from the control experiments, a priori
knowledge of the particle sizes is not required to use this

Fig. 1 a–c Intermediate scattering function f(q,t) as a function of lag time t measured for bidisperse mixtures of particles of radius 50 nm and
1 μm formulated at a large-to-small volume fraction ratio r of a 0.03, b 0.01, and c 0.003 at wavevectors of q= 6.8 μm−1 (30°, squares), 11.2 μm−1

(50°, diamonds), and 18.7 μm−1 (90°, triangles). Red lines indicate fitting functions: Eq. 2 for r = 0.03 and q= 6.8 μm−1 and Eq. 1 otherwise. d
Predicted scattering intensity I(q) for small particles at ϕ= 10−3 and large particles at volume fraction ratios of r= 0.03, 0.01, and 0.003 as a
function of wavevector q using standard equations for hard spheres.50 The range of wavevectors probed by DLS and DDM are indicated by
dashed and dash-dotted lines, respectively. e–g Intermediate scattering function f(q,t), extracted from DDM measurements, as a function of lag
time t measured for bidisperse mixtures of particles of radius 50 nm and 1 μm formulated at large-to-small volume fraction ratios r of a 0.03, b
0.01, and c 0.003. For each ratio, data were analyzed over the wavevector range 0.98 μm−1< q< 3.01 μm−1; the figure shows representative
correlation functions obtained for wavevectors q= 1.08 μm−1 (squares), 2.05 μm−1 (diamonds), or 2.92 μm−1 (triangles). Red lines indicate fits to
Eq. 4
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functional form. This functional form exploits the full dynamic
range of the DDM technique to generate a more robust non-linear
fitting methodology and thereby accurately measure the diffusiv-
ities of both particles in a bidisperse mixture.
We obtained f(q,t) for each wavevector from series of difference

images.19 In contrast to the intermediate scattering functions
measured at higher angles using DLS, the DDM f(q,t) clearly show
non-exponential decays over 0.98 μm−1 < q < 3.01 μm−1 for all
values of r examined here (Fig. 1e–g). This q-range is narrower
than that accessed by us in earlier measurements using similar
equipment13–15 and is limited by the dynamics of the particles
relative to the rate of image acquisition (Fig. S1 in Supplementary
Information). For q < 0.98 μm−1, the upper plateau was not
reached by the maximum lag time at which we obtained enough
independent measurements for statistics, 35 s (2200 frames),
which was set by the frame rate and camera buffer. For q > 3.01
μm−1, the frame rate (63 fps) was insufficient to resolve the
diffusive relaxation time scale of the smaller particles. Nonetheless,
the data in Fig. 1e–g indicate that DDM can resolve particle
dynamics in a bidisperse mixture.
The intermediate plateaus observed in the DDM intermediate

scattering functions (Fig. 1e–g) resulted from the large particle size

ratio aL
aS
� 20

� �
. When aL

aS
<10, the two relaxations will not be well

separated. Instead, f(q,t) will resemble a stretched exponential
decay, characteristic of a dynamic process with a distribution of
relaxation rates.13, 35 Careful analysis of the residuals of a stretched
exponential and a double exponential fit can distinguish between
these decays.39 For mixtures of particles of comparable size, the
distribution of particle sizes will manifest as a polydispersity term,
which can be captured by fitting a cumulant form to the
intermediate scattering function.19

To confirm that DDM yields quantitative information on the
dynamics of bidisperse mixtures, we examined the q-dependence
of τL, which was not resolvable with DLS. The inverse of this time
scale, τ�1

L , scaled linearly with q2 over the given range of
wavevectors, indicating that the particle motion was diffusive
(Fig. 2). Furthermore, the diffusion coefficient of the particles,
extracted from the slope of a linear fit of τ�1

L as a function of q2,
was in agreement with that obtained on a unary sample of large

particles with DLS and with DDM. Finally, we compared relaxation
times of the small particles τS = τL/fR extracted from the DDM fits
on bidisperse suspensions to those obtained on unary suspen-
sions in DLS. Within fitting errors, we obtained good agreement
between the diffusion coefficients obtained in unary (control) and
in bidisperse suspensions (Table 2). Thus, DDM accurately
measures the dynamics of both particles in a bidisperse
suspension, beyond the capabilities of DLS. This enhanced
sensitivity of DDM arises because we study a small population
of large scatterers in a suspension of smaller scatterers (a relevant
limit for early-stage aggregation, as one example). In the opposite
limit, where the small particles are the minority species in a
bidispersed mixture, DLS would be a more sensitive technique
because the scattering from the large population of large
scatterers would overwhelm that from the small particles in DDM.

DDM signal generation in bidisperse suspensions
DDM is a heterodyne scattering method, in which the scattered
light interferes with the transmitted light. The structural informa-
tion extracted from heterodyne near field scattering depends on
the sample-to-detector distance.10 DDM, by contrast, accurately
captures the dynamics of a sample regardless of the sample-to-
detector distance12 because the dynamic information is encoded
in the time dependence of the intermediate scattering function
rather than in the signal amplitude.

Fig. 2 a Inverse of the large-particle time scale τ�1
L as a function of

the square of the wavevector q2 for bidisperse mixtures of particles
of radius 50 nm and 1 μm formulated at large-to-small volume
fraction ratios r= 0.03 (squares), 0.01 (diamonds), and 0.003 (triangles).
Data at r= 0.01 and r = 0.003 are offset by one and two unit
increments on the y axis, respectively, for clarity. b Comparison of
DLS and DDM inverse time scales for the small particles as a
function of q2. Data at low wavevectors are acquired in a bidisperse
mixture using DDM; data at higher wavevectors are acquired in
unary solutions using DLS. Dashed red lines in a and b indicate linear
fits

Table 1. Diffusivities obtained from dynamic light scattering
measurements for unary (top two rows) and bidisperse (labeled with
volume fraction ratio r) samples

Diffusion coefficient
[μm2/s]

Radius [nm] ϕ q [μm−1] DS DL

50 10−3 4.3± 0.1 a

r = ϕL/ϕS 1000 10−5 a 0.20± 0.02

0.003 50 10−3 6.8 3.8± 0.2 b

1000 3 × 10−6 11.2 4.1± 0.1 b

18.7 4.3± 0.1 b

0.01 50 10−3 6.8 4.5± 0.4 b

1000 1 × 10−5 11.2 4.3± 0.1 b

18.7 4.5± 0.1 b

0.03 50 10−3 6.8 4.9± 0.3 0.30± 0.05

1000 3 × 10−5 11.2 4.1± 0.3 b

18.7 4.1± 0.1 b

Error bars are the standard deviation from 10 independent runs. The
Stokes-Einstein diffusivities are 4.3 and 0.21 μm2/s for small and large
particles, respectively
a measurements made on unary samples lacking this particle population
b unable to resolve second particle population
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In DDM, the signal amplitude A(q) is the product of the optical
transfer function, which depends on the imaging set up, and the
scattering pattern of the particles.12 For the bidisperse samples at
r = 0.01 and 0.003, A(q) was non-monotonic (Fig. 3a). To
investigate the origins of this non-monotonicity, we extracted
the contributions to the DDM signal from the small and large
particles (Fig. 3b, c) by multiplying A(q) by the relative contribu-
tions fS(q) and fL(q), respectively. Whereas the intensity of the small
particles decayed monotonically with increasing wavevector at all
r, the intensity of the large particles exhibited non-monotonic
oscillations at r = 0.01 and 0.003. Similar oscillations are seen in I(q)
for the large particles (Fig. 1d), but at higher wavevectors than
those probed with DDM; over the q-range probed by DDM, I(q) of
the large particles is predicted to decrease monotonically. Thus,
the oscillations in the DDM amplitude were not caused by the
scattering intensity, but by the optical transfer function acting on
the large particles.
For monodisperse samples of small particles with r/λ < 1, the

optical transfer function for the DDM signal decays exponentially
with q with a rate set by a roll-off wavevector qro.

12 By contrast,
large objects with r/λ≫ 1 act as phase objects, introducing
oscillations to the optical transfer function and consequently to
A(q).12, 37 To identify the positions of the non-monotonic
oscillations in the large-particle signal, we examined the relative
scattering intensity of the large particles fL(q) (Fig. 4). This measure
isolates the oscillations from the exponential decay of the optical
transfer function to more accurately identify the local minima.
Although the incident light intensity and sample thickness were
held constant for all r, we varied the condenser aperture from ~0.1
for r = 0.03 and 0.01 and to ~0.15 for r = 0.003 to improve the
signal-to-noise ratio. Because of this change in experimental
conditions, we avoid direct comparisons between fL(q) for the
three samples. Nevertheless, all three samples exhibited pro-
nounced minima in the relative intensities. For r = 0.03 and 0.01,
the primary minima occurred at q2 ≈ 4 μm−2 and for r = 0.003, at
q2 ≈ 5.5 μm−2. We attribute these minima to the interference
patterns from the large particles present in the microscope images
and in the series of difference images (Fig. 4b).
In a heterodyne geometry, interference patterns are complex

due to the presence of both scattered and transmitted fields. The
best examples of interference patterns are holograms,40–43 in
which the scattered field interferes with the transmitted light, and
diffraction patterns,44, 45 in which the scattered field interferes

with itself. These patterns typically depend on the particle radius
and the distance z between a particle and the image plane, which
ideally can be resolved to 50 nm.41, 44 The DDM algorithm,
however, averages the scattering signal from multiple particles at
varying axial positions. Additionally, the particles diffuse vertically
and this motion changes the position of the rings over time. Thus,
the minima present in fL(q) are smeared without the ideal axial
resolution of diffraction-based or hologram-based particle tracking
methods. Nevertheless, we compared the position of the minima
fL(qmin) to the diameter d = 2π/qmin of the interference rings in the
captured original images, calculated as the boundary between the
dark ring and the outer light ring (dashed circle in Fig. 4b). While
we do not attempt to predict changes in the position of fL(qmin)
between samples, the close agreement between the diameters of
the rings and fL(qmin) (Table 3) suggests that it is the interference
patterns that lead to the non-monotonic changes in the DDM
signal intensity. This argument implies that fL(qmin) depends on
particle size, incident wavelength, and distance of particles from
focal plane but is in principle independent of particle
concentration.
To test this hypothesis, we performed a proof-of-concept

experiment on unary suspensions of large particles that were
segregated via sedimentation to the bottom of the glass sample
chamber. The particles remained diffusive on the glass surface, but
hydrodynamic interactions with the surface reduced their
diffusivity compared to that in the bulk (Figs. S2 and S3,
Supplementary Information). Focusing the lens at different

Table 2. Diffusivities obtained from differential dynamic microscopy
experiments for unary (top rows) and bidisperse (labeled with volume
fraction ratio r) samples

Diffusion coefficient
[μm2/s]

Radius [nm] ϕ DS DL

50 10−3 a 0.22± 0.01

r = ϕL/ϕs 1000 10−5 4.1± 0.1 a

0.003 50 10−3 4.3± 0.3b 0.20± 0.01

1000 3 × 10−6

0.01 50 10−3 4.0± 0.2b 0.19± 0.01

1000 1 × 10−5

0.03 50 10−3 4.4± 0.4b 0.20± 0.01

1000 3 × 10−5

Error bars are numerical uncertainty from fitting functions. Stokes-Einstein
diffusivities are 4.3 and 0.21 μm2/s for small and large particles, respectively
a measurements made on unary samples lacking this particle population
b calculated from the experimentally-measured large-particle diffusivity
using the globally-fit size ratio fr

Fig. 3 a DDM signal amplitude A(q) as a function of wavevector
squared q2 for bidisperse mixtures of particles of radius 50 nm and 1
μm at varying volume fraction ratios r. b and c describe the
contributions to signal intensity from small and large particles, AS(q)
and AL(q), respectively
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distances z above the plane of the segregated particles, we
controlled the distance between the particles and the image
plane. The amplitude of the DDM signal A(q) depended on the
vertical position (Fig. 4c) and the locations of the minima
corresponded nearly quantitatively with observed changes in
the interference patterns (Fig. 4d). Thus, the amplitude A(q) of the
dynamic structure factor Δ(q;t) can, in principle, be used to extract
information about the axial position of large particles, similar to
diffraction-based44 or holographic40, 43 particle tracking methods
in three dimensions. Although difficult to predict the interference
patterns a priori due to the distribution of wavelengths and the
spherical wavefront of the incident light in a DDM experiment,
similar experiments could be performed at smaller height steps to
calibrate the observed interference patterns. This calibration
would allow determination of the height by matching the
measured A(q) to the calibrated A(q).
Future experiments could exploit a designed separation of time

scales (by tuning particle size, solution viscosity, and/or density
difference) to characterize multiple dynamic processes simulta-
neously. For example, in microgravity environments where
sedimentation is minimal, experiments could separate aggrega-
tion18 and conjugation46 from the motion of individual particles. In
terrestrial experiments, in-plane diffusion could be characterized
with DDM, and sedimentation velocities could be calculated
tracking the changes in A(q) over a series of movies acquired over
extended times.

DDM in microgravity
The simplicity of this method well suits it for experimental tests of
microgravity effects on the dynamics of colloid suspensions and
biological solutions on the ISS. The LMM facility on the ISS is
equipped with 63 × oil immersion lenses (Leica, 11506350 and
11506062) and a 100 × oil immersion lens (Leica, 11506372) with
numerical aperture of 1.4, similar to that used in our experiments.
The LMM is equipped with an Imperx Bobcat B2020 camera with
frame rates of 51 and 100 fps and a field of view of 125 × 177 μm2

for the 63 × lens or 77 × 105 μm2 for the 100 × lens. Wide-field epi-
illumination is provided by a metal halide arc lamp-coupled to a
solid core light pipe, whose intensity can be tuned to improve
image quality by an epi aperture block. LMM was recently updated
with a GIU confocal system and fluorescent filter cubes including
436 nm (blue) Filter P/N D436/10X (Chroma) and 546 nm (green)
Filter P/N 11504010 (Leica), which additionally permit confocal
and fluorescent DDM in addition to brightfield DDM.

CONCLUSIONS
We show that DDM can be used to obtain information about the
dynamics of multiple constituents even at very dilute concentra-
tions not detectable with DLS. In addition, DDM on bidisperse
mixtures offers a new capability: inferring the axial position of the
larger scatterers through physics similar to that underlying
diffraction-based and hologram-based particle tracking methods.
We believe the ability to characterize both axial position and in-

Fig. 4 a Relative contribution to the DDM signal from the large
particles fL(q) as a function of the square of the wavevector q2.
Arrows indicate predicted minima from the diameter of the
interference rings. The incident light intensity and sample thickness
were kept constant between all samples but the condenser
numerical aperture was set to ~0.1 for r = 0.03 and 0.01 and to
~0.15 for r = 0.003 to improve the signal-to-noise ratio. b Examples
of interference rings seen in microscope images (top) and image
differences (bottom) at a lag time τ = 1.6 s for each sample. Dashed
circle indicates the diameter of the interference ring. c DDM signal
amplitude A(q) for large particles segregated via sedimentation to
the bottom of a glass sample chamber and imaged at various
heights z above the plane of the segregated particles. Arrows
indicate the predicted minima from the diameter of interference
rings. d Examples of interference rings in microscope images for
segregated particles imaged at the same heights. Dashed circles
indicate the diameters of the interference rings corresponding to
arrows in c. Microscope images and image differences were
modified to increase brightness and contrast for clarity

Table 3. Measured interference pattern diameter and predicted qmin

from microscope images

r = ϕL/
ϕS

Ring diameter d
[μm]

Predicted qmin= 2π/d
[μm−1]

Actual qmin

[μm−1]

0.003 3.0± 0.7 2.1± 0.5 2.3± 0.1

0.01 3.5± 0.7 1.8± 0.4 2.0± 0.1

0.03 3.7± 0.7 1.7± 0.3 2.0± 0.1

Error in ring diameter equivalent to ±2 pixels. Error in qmin is equal to the q-
resolution of DDM
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plane dynamics can be exploited to measure dynamics on
different time scales, such as sedimentation velocity and diffusion.
The simplicity of DDM, and the availability of compatible facilities
on the ISS, indicates that this method can be applied to obtain
dynamical information across a broad range of systems studied in
microgravity. For example, ground-based studies use DDM to
measure concentration fluctuations in binary47 and ternary48 fluid
mixtures; hence this method can be readily applied to the wealth
of image time-series data available from extant microgravity
studies on similar systems.49

METHODS
Materials
Fluoro-Max Dyed Red Fluorescent polystyrene particles with radii aL = 1 µm
and aS = 50 nm (dispersity <5%, as reported by the manufacturer,
consistent with measures in Fig. S4) were purchased from Thermo Fisher
Scientific. The nanoparticles were packaged as aqueous suspensions at a
concentration of 1% solids by weight, which contained a trace amount of
surfactant to inhibit particle aggregation. The refractive index of the
nanoparticles was 1.59 and their density was 1.06 g cm−3.
Samples for DLS and DDM experiments were prepared by diluting

dispersions of nanoparticles from the as-received concentration (1 wt%)
with deionized water that was filtered with 0.2 μm polyethersulfone
syringe filters (Sterlitech). To minimize aggregation and ensure uniform
dispersion, all samples were bath sonicated for 10 s prior to sample
preparation. In these experiments, we fixed the volume fraction of the
small particles at ϕS = 10−3 and prepared solutions with volume fraction
ratio of large to small particles of r = ϕL/ϕS = 0.003, 0.01, and 0.03 (i.e., ϕL =
3 × 10−5 for r = 0.03, ϕL = 10−5 for r = 0.01, and ϕL = 3 × 10−6 for r = 0.003).

Dynamic light scattering
DLS data were collected with an ALV goniometer equipped with a He–Ne
laser (wavelength λ = 632.8 nm) and an ALV-5000/EPP Multiple tau Digital
Correlator (ALV-GmbH, Langen, Germany). For DLS experiments, samples
were loaded into cylindrical cuvettes of diameter 10mm. To minimize
contamination, all cuvettes were washed with DI water prior to loading
into the light scattering instrument. We collected the light scattered at a
fixed angle θ and a temperature of 20 °C for 110 s and repeated this
measurement ten times at each of three scattering angles θ = 30°, 50°, and
90°, corresponding to wavevectors q ¼ 4πn

λ

� 	
sin θ=2ð Þ of 6.84, 11.18, and

18.7 µm−1, where n = 1.331 is the refractive index of water. From the
scattered intensity as a function of time, the normalized intensity-intensity
correlation function g2(q,t) = 〈I(t0 + t)I(t0)〉/〈I(t0)〉

2 was calculated for each
wavevector q at lag times t ranging from 0.1 μs to 10 s.

Differential dynamic microscopy
Samples for DDM were sealed in glass chambers constructed from cover
glasses. Two (22 × 22)-mm2 cover glasses (thickness 0.19–0.23mm, Fish-
erbrand), separated laterally by ∼10mm, were attached to a rectangular
cover glass of dimensions 48 × 65mm2 (thickness 0.13–0.17mm, Gold
Seal) using an epoxy-based adhesive (Devcon). A (22 × 22)-mm2 cover
glass was then centered on top of the two cover glasses to create an open
chamber. One side of the chamber was sealed with epoxy. Particle
suspensions were introduced into the chamber through the open side,
which was then sealed with epoxy.14 We assumed that the thickness of this
chamber was ~160 μm. For DDM data collection, particle suspensions were
imaged on a Leica inverted microscope attached to a 63 × oil immersion
objective lens (NA = 1.4) using an 8-bit camera (AOS Technologies AG) at
room temperature (≈20 °C). The numerical aperture of the microscope
condenser was 0.4 (NA = D/f, where f = 100mm is the focal length of the
tube lens and D = 40mm is the diameter of exit light), which introduces
too much incoherency to accurately implement DDM.12 Hence to optimize
the imaging conditions for DDM experiments, we manually reduced the
condenser aperture to ~0.1 for r = 0.03 and 0.01 and to ~0.15 for r = 0.003,
estimated by measuring the ratio of the average intensity of the images to
the intensity of images acquired with the condenser fully open. For each
sample, we recorded two series of 4200 images of size 480 × 640 pixels2

(pixel size: 0.305 μm, leading to an image size of 146.4 × 195.0 μm2) at a
frame rate of 63 frames s−1.
To extract the dynamics of each diffusive population from micrographs,

a DDM algorithm was implemented as described in ref 12. Briefly, images

separated by a fixed lag time t were subtracted to obtain the intensity
difference, Δ(x,y;t) = I(x,y,t0 + t)−I(x,y;t0), where I(x,y;t0) was the intensity at
position (x,y) measured at time t0; in these experiments, lag time t ranged
from 0.0158 to 34.9 s. The image subtraction produced a speckle pattern,
which could be analyzed to extract information about fluctuations in
concentration on different length scales. We applied a two-dimensional
fast Fourier transform to each image in the image difference series,
generated its 2D power spectrum Δ(ux, uy; t), and averaged over all starting
times t0 at a constant lag time t. Because the particles were spherical and
could freely diffuse in all directions, the 2D power spectrum was isotropic.
Hence, we azimuthally averaged Δ(ux, uy; t) to generate the DDM structure

function Δ(q;t), where q � 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
.

In theory, the range of wavevectors accessible in DDM was determined
by the experimental geometry. The minimum accessible wavevector was
estimated to be q = 2π/l ≈ 23 μm−1, where l = 195 μm was the largest
dimension of the images. Similarly, the maximum accessible wavevector
was estimated to be q ¼ 2π sin θmaxð Þ=λ � 10:6 μm−1, where θmax ≈ 68° was
the maximum accessible angle of the lens and λ ≈ 550 nm was the
wavelength of the incident light.12 In practice, neither geometric limit was
accessible for our bidisperse mixtures, due to the time scales of the particle
dynamics and practical limitations set by the number of frames (set by the
acquisition camera). At low q, the dynamics typically did not fully
decorrelate and the upper plateau of the structure function was not
reached, resulting in poor fitting; at high q, the frame rate was insufficiently
fast to capture the diffusive relaxation time of the 50 nm particles
(Supplementary Information Fig. S1). Hence, we restricted the q-range to
0.98 μm−1 < q < 3.01 μm−1 in these experiments.

Data availability
The datasets generated and analyzed during the current study are
available in the Open Science Framework repository, https://osf.io/93cb5/
(doi: 10.17605/OSF.IO/93CB5). Additional movie files are also available from
the corresponding author on reasonable request.
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