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Nanoparticle dispersion in porous media: Effects of array geometry and flow orientation
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We investigate the effects of array geometry and flow orientation on transport of finite-sized particles in
ordered arrays using Stokesian dynamics simulations. We find that quiescent diffusion is independent of array
geometry over the range of volume fraction of the nanoposts examined. Longitudinal dispersion under flow
depends on the direction of incident flow relative to the array lattice vectors. Taylor-Aris behavior is recovered for
flow along the lattice directions, whereas a nonmonotonic dependence of the dispersion coefficient on the Péclet
number is obtained for flow orientations slightly perturbed from certain lattice vectors, owing to a competition
between directional locking and spatial velocity variations.
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I. INTRODUCTION

Understanding the transport of nanoparticles through geo-
metrically complex porous media has implications for many
industrial and natural processes, including oil recovery [1],
drug delivery [2,3], the dispersion of nutrients, minerals,
and contaminants through soils [4–6], and separations using
techniques such as gel electrophoresis [7] and chromatogra-
phy [8]. One key aspect influencing nanoparticle transport
is the nature of their interactions with the surrounding
medium, which include steric repulsions, van der Waals and
depletion-induced attractions, and hydrodynamic and electro-
static forces. The effects of these interactions on transport
behavior are strongly influenced by the structure of the porous
medium and become most pronounced in strong confinement,
when characteristic length scales within the porous medium,
such as the pore or throat diameter, are comparable to the
nanoparticle size [9–17]. Improved understanding of how the
structure of the porous medium influences these interactions
and, hence, nanoparticle dispersion is critical to developing
strategies to control particle transport in a variety of practical
settings.

Although the finite size of nanoparticles likely influences
their transport in highly confined media, theoretical and
computational studies of pore-scale transport have primarily
focused on the transport of infinitesimal tracers. Previous
studies have examined the effects of different physical factors,
including flow conditions [18–21], local packing geometry
[18,19], and pore shape [21], on the dispersion of tracers.
Because the tracer particles in these studies are infinitesimally
sized, however, their physical interactions with the medium
do not play an important role in the dispersion. Thus, there
remains a need to understand the effect of these physical in-
teractions on the transport of finite-sized particles in strongly
confined porous media. Two seminal studies used Stoke-
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sian dynamics (SD) simulations to investigate the effects of
medium configuration and particle size on transport through
spatially periodic fibrous media at low Péclet numbers (Pe)
[9,10]. The global transport coefficients from the Stokesian
dynamics simulations were found to be in good agreement
with predictions from a less rigorous effective medium ap-
proach based on the Brinkman equation. Nonetheless, the
effects of medium structure on particle dispersion have not
been systematically investigated over a broad range of flow
conditions and thus remain incompletely understood.

In our recent study [22], we performed SD simulations
to investigate the effects of steric and hydrodynamic inter-
actions and system dimensionality on particle transport in
square nanopost arrays. Whereas both types of interactions
hinder particle diffusion under quiescent conditions, they
were found to enhance longitudinal particle dispersion under
flow. We also found that longitudinal dispersion is similar in
two- and three-dimensional models of nanopost arrays. Here,
we extend our previous work by employing SD to examine
the effects of array structure and flow orientation in simi-
lar systems. Specifically, we compare particle diffusion and
dispersion in three-dimensional square and hexagonal arrays
over a broad range of flow rates and orientations. We find
that quiescent diffusion decreases as the volume fraction of
nanoposts is increased, as expected, and is approximately
independent of array geometry for the systems examined.
Dispersion under flow depends on the direction of the incident
flow relative to the array lattice vectors. For flow oriented
along the lattice vectors, the longitudinal dispersion coef-
ficient approximately recovers Taylor-Aris scaling behavior
at high Pe. For other orientations, however, the qualitative
behavior of the longitudinal dispersion coefficient depends on
the nanopost volume fraction and flow angle. Notably, at large
nanopost volume fractions (strong confinement), we observed
nonmonotonic dependence of the longitudinal dispersion co-
efficient on Pe when the flow orientation is slightly perturbed
from certain lattice vectors. This intriguing behavior is found
to arise from a competition between the directional locking
of particle trajectories onto single lattice vectors caused by
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nonhydrodynamic interactions with the nanoposts [23], and
increased spatial variations in the fluid velocity at high Pe,
which act to diminish and enhance longitudinal dispersion,
respectively.

II. METHODS

To investigate the effects of packing arrangement and flow
orientation on particle transport, we performed SD simula-
tions of three-dimensional square and hexagonal arrays of
nanoposts. For convenience, the model systems and analyses
are described by employing a set of dimensionless units in
which the diameter of the transported particle dp and kBT are
defined as the fundamental measures of length and energy,
respectively, where kB is Boltzmann’s constant and T is tem-
perature. The diffusive time scale τd = 3πηd3

p /4kBT is used
as the measure of time, where η is the dynamic fluid viscosity.
Hence, dp = kBT = τd = 1 in the adopted units.

Each nanopost was modeled as an immobile chain of 20
tangential spheres of diameter dnp = 1. To construct the ar-
rays, the chains were arranged on periodic square [Fig. 1(a)]
and hexagonal [Fig. 1(b)] lattices in the x-y plane, with their
major axes aligned along the z direction of the simulation cell.
The solid volume fraction φ for square and hexagonal arrays
is φ = πd2

np/6L2 and φ = πd2
np/3

√
3L2, respectively, where

L is the lattice spacing. Similar nanopost models have been
employed in previous SD studies of confined particle transport
[9–12,17,22]. In our study, we used 3 × 3 arrays, which was
found in our previous work [22] to be sufficiently large to
minimize well-known finite-size effects associated with the
periodicity of the systems [17,24–26].

Pressure-driven flow through the arrays was mimicked
by imposing a uniform suspension velocity V∞ = V∞r|r|−1,
where V∞ is the magnitude and r is a vector specifying the
direction of the flow. The flow orientation θ = arccos ( V∞·a

|V∞||a| )
is defined relative to the lattice vector a running parallel to the
x axis of the simulation cell (Fig. 1). For clarity, we classify
the relative orientations based on the characteristic type of
flow pattern they produce. Lattice orientations θl correspond
to cases where r = n1a + n2b for ni∈Z such that it lies along
an integer linear combination of the lattice vectors a and
b. These orientations produce flow patterns characterized by
streamlines that have a periodicity commensurate with an
integer number of unit cells (Fig. 2). All other cases for r are
classified as nonlattice orientations θnl and generate flow pat-
terns with aperiodic streamlines (Fig. 2). In our simulations,
we examined a variety of lattice and nonlattice orientations
ranging from 0◦–45◦ and 0◦–30◦ for the square and hexagonal
array, respectively.

The simulations were conducted under dilute conditions
by considering the transport of a single particle through the
nanopost arrays. Particle trajectories were propagated using
the SD algorithm described in our previous study [22], em-
ploying a integration time step dt in the range of 10−7–10−5

depending on the value of V∞. For large V∞, an appropriate
time step was identified by choosing dt such that displace-
ments due to diffusion and advection were on the same order
(i.e.,

√
2kBT dt/3πηdp ∼ V∞dt). In each case, additional tests

were performed to confirm that computed transport properties
were insensitive to further reduction of dt (<3% variation).

FIG. 1. Two-dimensional orthographic projection of the
(a) square and (b) hexagonal nanopost arrays in the x–y plane of
the simulation cell. (c) Three-dimensional perspective view of a
section of a hexagonal nanopost array. The spheres representing the
nanoposts (gray, np) and the diffusing particle (red, p) have the same
diameter (i.e., dnp = dp).

Hydrodynamic interactions between the diffusing particle
and nanoposts were rigorously modeled by including both
far-field and near-field components. Far-field hydrodynamic
interactions were treated using the Ewald summation method
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FIG. 2. Streamlines for (a) lattice (θl = 45◦) and (b) nonlattice
(θnl = 20◦) flow orientations in square arrays with φ = 0.028.

[17,24–26]. To prevent unphysical overlaps, hard-sphere
excluded volume interactions between the diffusive particle
and nanoposts were modeled using the standard rejection
scheme [12,17]. All other details of the SD simulations are
identical to those reported in Ref. [22].

Transport properties were computed by averaging over an
ensemble of 100 independent particle trajectories, and statis-
tical uncertainties were estimated from the standard error of
the mean. Particle transport under quiescent conditions was
characterized by computing the diffusivity from the long-time
limit of the ensemble-averaged, in-plane mean-square dis-
placement (MSD), Dq = lim�t→∞〈�r2(�t )〉/4�t . Similarly,
particle transport under flow conditions was characterized by
computing the asymptotic longitudinal dispersion coefficient
(dispersion in the direction of flow) DL [27,28]:

DL ≡ lim
t→∞

1

2

dσ 2
L (t )

dt
, (1)

where σ 2
L (t ) = 〈[�rL(t ) − 〈VL〉t]2〉 is the particle MSD eval-

uated in the frame of reference of the average longitudinal
velocity 〈VL〉. The velocity 〈VL〉 was estimated from a linear fit
to the average particle displacements over time. We normalize

FIG. 3. Normalized in-plane diffusion coefficients Dq/D0 as
functions of nanopost volume fraction φ in square (circles) and
hexagonal (triangles) arrays. Estimated uncertainties are smaller than
the symbol sizes.

Dq and DL by the diffusivity of the freely diffusive particle
D0 = kBT/3πηdp.

III. RESULTS AND DISCUSSION

We first examined the particle diffusivity under quiescent
conditions in both array types as a function of the solid volume
fraction φ (Fig. 3). As expected, the normalized diffusivity
Dq/D0 decreases monotonically with increasing φ, dropping
to approximately 50% of the free diffusivity D0 as φ is in-
creased from 0 to 0.058. This behavior reflects the slowing
of particle dynamics due to increasing steric hindrance and
hydrodynamic drag from the nanoposts as the solid volume
fraction is increased. The particle diffusivities in the square
and hexagonal arrays with the same φ are nearly indistinguish-
able, indicating that the quiescent dynamics are insensitive to
the differences in array geometry for the two types of systems
considered here. These findings are consistent with previous
smooth particle hydrodynamics simulations, which show that
the diffusivity of infinitesimal tracers is nearly independent
of geometry in spatially periodic porous media with φ = 0.4
(porosity of 0.6) [29]. Thus, for both finite-sized particle
and tracers, simulations suggest that φ, which determines
the effective degree of confinement, is the dominant factor
controlling particle transport under quiescent conditions.

Particle transport under flow conditions was investigated
by simulating systems with φ = 0.028 and 0.058 for each
array geometry. The behavior of the normalized average par-
ticle velocity 〈VL〉/V∞ as a function of flow orientation θ

(Fig. 4) depends on the relative importance of advective and
diffusive particle transport characterized by the dimensionless
Péclet number Pe = 〈VL〉dp/D0. For uniform flow velocity
V∞ = 5 (Pe � 10), advective and diffusive particle transport
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FIG. 4. Normalized average particle velocities 〈VL〉/V∞ as func-
tions of flow orientation θ in (a), (c) square and (b), (d) hexagonal
arrays with φ = 0.028 (top row) and φ = 0.058 (bottom row). The
lattice orientations θl are indicated on the top x axis in panels (a), (b).

mechanisms compete. In this case, 〈VL〉/V∞ attains a max-
imum for the lattice orientation θl = 0◦ and then gradually
decreases and becomes almost constant as θ increases. As
V∞ and hence Pe increase, advection becomes dominant and
the behavior of 〈VL〉/V∞ becomes increasingly sensitive to
changes in θ . For V∞ > 5 (Pe > 10), 〈VL〉/V∞ exhibits local
maxima for lattice orientations θl that yield periodic flow
patterns [Figs. 4(a) and 4(b)]. The particle velocity decreases
as the incident flow is perturbed away from these orienta-
tions. In particular, slight deviations from orientations along
one of the primitive lattice vectors {a, b} lead to precipi-
tous drops in 〈VL〉/V∞ that become more prominent as V∞
increases. Increasing the solid volume fraction from φ =
0.028 to 0.058 also markedly enhances the sensitivity of
〈VL〉/V∞ to changes in θ [Figs. 4(c) and 4(d)]. The local max-
ima of the average velocity for lattice orientations θl at large
flow rates is in agreement with earlier Brownian dynamics
simulations of DNA electrophoresis through tilted hexago-
nal post arrays [30] and molecular dynamics simulations of
finite-sized particles through a regular lattice of cylindrical
obstacles [31].

The variation of average velocity with flow orientation at
large V∞ arises from changes in the frequency of particle
collisions with the nanoposts, which slow the motion of the
particles. The mean collision frequency 〈C〉 (the average num-
ber of collisions per unit distance traveled) decreases with
increasing V∞ for lattice flow orientations θl (not shown),
leading to faster transport through the nanopost array [30]. By
contrast, the collision frequency increases or remains nearly

constant with increasing V∞ for nonlattice flow orientations
θnl, leading to a decrease in 〈VL〉/V∞ [30].

The most pronounced decreases in 〈VL〉/V∞ occur when
the flow is slightly perturbed from θl orientations along the
primitive lattice vectors ({0◦, 45◦} and {0◦, 30◦} for square
and hexagonal arrays, respectively) (Fig. 4). These abrupt
decreases arise due to directional locking, in which particle
dynamics become dominated by advection along a specific
vector over a finite range of θ [23]. To visualize this di-
rectional locking behavior, we computed the log-probability
density distribution of the particle positions in the x-y plane
log10 P(x, y) for selected flow orientations θ at V∞ = 1000
(Figs. 5 and 6). When the flow is oriented along a or b,
particles are able to advect along unobstructed paths through
the void spaces between the rows of nanoposts. When the
flow direction is slightly perturbed from either of these di-
rections (e.g., {1.25◦, 43.75◦} and {1.25◦, 28.75◦} for square
and hexagonal arrays, respectively), however, the particle
trajectories become locked along one of the lattice vectors,
resulting in frequent (periodic) collisions with the nanoposts
that decrease their velocity. Indeed, for a flow orientation of
θnl = 1.25◦ in square and hexagonal arrays with φ = 0.058,
we observe perfect directional locking, in which all particles
move closely along the lattice vector a (see movies S1 and
S2 in Supplemental Material [32]). In this case, the particles
advect towards the centers of nanoposts, leading to frequent,
direct collisions and a concomitant decrease in 〈VL〉/V∞ as V∞
increases [Figs. 4(c) and 4(d)].

We also examined the normalized longitudinal dispersion
coefficient DL/D0 (along the direction of flow) as a func-
tion of flow angle θ for different values of the imposed
uniform fluid velocity V∞ (Fig. 7). For V∞ = 5, DL/D0 is
maximum at θl = 0◦, but decreases slightly (by less than an
order of magnitude) with increasing θ . As advection becomes
increasingly dominant at larger V∞, however, the sensitivity of
DL/D0 to flow orientation increases markedly, varying by as
much as 4 orders of magnitude with θ at the largest velocity
(V∞ = 5000) examined. In the advection-dominated regime
(V∞ > 5, Pe > 10), DL/D0 exhibits local maxima for lattice
flow orientations θl [Figs. 7(a) and 7(b)] and decreases as
θ is perturbed away from these orientations. Similar general
trends are observed at both solid volume fractions examined,
except for the appearance of new local extrema for V∞ > 80
at flow orientations slightly perturbed from θl orientations
along a or b in the systems with φ = 0.058 [Figs. 7(c) and
7(d); near {1.25◦, 43.75◦} and {1.25◦, 28.75◦} for square and
hexagonal arrays, respectively]. The strong dependence of
the longitudinal dispersion coefficient on flow orientation at
large V∞ is in contrast with an earlier simulation study of
the transport of infinitesimal tracers through two-dimensional
square nanopost arrays at Pe = 102, which reported a sharp
decrease in DL upon increasing θ over the range 0 − 10◦ and
a wide plateau region for θ = 15–45◦ [33].

The sensitivity of DL/D0 to flow angles at large V∞ arises
due to the interplay between flow streamlines and particle
collisions with the nanoposts. For lattice flow orientations
θl , periodicity of the streamlines results in channel-like flow
between the rows of nanoposts on sufficiently large length
scales. With the emergence of channel-like flow, the longitudi-
nal dispersion coefficient is expected to increase rapidly with
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FIG. 5. Log-probability density distributions of particle positions log10 P(x, y) for different flow orientations θ in square arrays at V∞ =
1000 for φ = 0.028 (top row) and φ = 0.058 (bottom row). The intense blue color corresponds to the value log10 P(x, y) < −3.

increasing V∞ and eventually recover Taylor-Aris dispersion
behavior at sufficiently high flow velocities. For nonlattice ori-
entations θnl, however, the flow streamlines are aperiodic and
direct particles to collide more frequently with the nanoposts,
leading to slower dynamics. As a result, DL/D0 increases
more slowly with increasing V∞ for θnl compared to lattice
flow orientations θl.

Consistent with these expectations, the correlation be-
tween DL/D0 and the normalized (dimensionless) mean
collision frequency 〈C〉dp exhibits distinct trends for the
two types of flow orientations (Fig. 8). For θl, the col-
lision frequency decreases and longitudinal dispersion in-
creases sharply with increasing V∞. By contrast, for θnl,
the collision frequency increases or remains approximately

constant and longitudinal dispersion increases more slowly
with V∞.

Particle dispersion arises from a combination of advection
and diffusion at the pore scale [34]. Thus, we also examined
the behavior of DL/D0 with its natural dimensionless scaling
variable, the Péclet number Pe. For θl orientations along a or
b in square arrays with φ = 0.028, DL/D0 exhibits a gradual
initial increase and then crosses over to ∝ Pen scaling with
n ≈ 2 at Pe ∼ 10. [Fig. 9(a)]. The recovery of Taylor-Aris
behavior (i.e., quadratic scaling with Pe) at Pe > 10, where
advection is the dominant transport mechanism, is in accord
with earlier theoretical [20] and simulation [18,19,33] studies
of tracer dispersion in periodic ordered media. For other lat-
tice orientations θl, Taylor-Aris behavior is observed at high

FIG. 6. Log-probability density distributions of particle positions log10 P(x, y) for different flow orientations θ in hexagonal arrays at
V∞ = 1000 for φ = 0.028 (top row) and φ = 0.058 (bottom row). The intense blue color corresponds to the value log10 P(x, y) < −3.
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FIG. 7. Normalized longitudinal dispersion coefficients DL/D0

as functions of flow orientation θ in (a), (c) square and (b), (d) hexag-
onal arrays with φ = 0.028 (top row) and φ = 0.058 (bottom row).
The lattice orientations θl are indicated on the top x axis in panels
(a), (b).

FIG. 8. Correlations between normalized longitudinal dispersion
coefficient DL/D0 and average normalized collision frequency 〈C〉dp

in (a), (c) square and (b), (d) hexagonal arrays with φ = 0.028 (top
row) and φ = 0.058 (bottom row). Open and closed symbols denote
non-lattice θnl and lattice θl directions, respectively. The solid and
dashed line arrows in (a) show the trend with increasing V∞ for lattice
directions θl and nonlattice directions θnl, respectively.

FIG. 9. Normalized longitudinal dispersion coefficients DL/D0

as functions of Péclet number Pe in square arrays with φ = 0.028
(top row) and φ = 0.058 (bottom row) for (a), (c) θl and (b), (d) θnl

flow orientations.

Pe, but the crossover to quadratic scaling is delayed to Pe ≈
500 [Fig. 9(a)]. Similar qualitative behavior is also observed
in the square arrays with φ = 0.058, but the magnitude of
DL/D0 is decreased [Fig. 9(c)]. This behavior arises because
the distribution of streamlines that are sterically accessible to
the center of the particles becomes increasingly narrow with
increasing φ [22].

By contrast, qualitatively different trends are observed
for the nonlattice flow orientations θnl. Notably, for the ar-
rays with φ = 0.028, DL/D0 exhibits an intermediate regime
with ∝ Pen scaling with 1 < n < 2 before turning down at
Pe � 103 [Fig. 9(b)]. For θnl = {1.25◦, 43.75◦}, which are
slightly perturbed from orientations along the primitive lattice
vectors {a, b}, increasing φ from 0.028 to 0.058 shifts the
downturn to lower Pe and results in the emergence of non-
monotonic behavior and a second power-law regime at Pe >

5 × 103 [Figs. 9(b) and 9(d)]. This nonmonotonic behavior re-
sults from two competing effects. As Pe increases, directional
locking becomes increasingly pronounced for these flow ori-
entations, narrowing the distributions of streamlines sampled
by the particles, which acts to decrease particle dispersion.
Increasing Pe, however, also leads to larger spatial variations
of the fluid velocity throughout the nanopost arrays, which
enhances dispersion. The latter effect ultimately dominates,
leading to a second power-law regime at sufficiently high Pe.

Longitudinal dispersion in the hexagonal arrays is qual-
itatively similar (Fig. 10) to that in the square arrays,
including the presence of nonmonotonic behavior (or pro-
nounced plateaus) at φ = 0.058 for orientations θnl = {1.25◦,
28.75◦} that are slightly perturbed from the lattice vectors
{a, b}, where strong directional locking is observed. At the
same φ and Pe for θl = 0◦, however, DL/D0 is slightly larger
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FIG. 10. Normalized longitudinal dispersion coefficients DL/D0

as functions of Péclet number Pe in hexagonal arrays with φ = 0.028
(top row) and φ = 0.058 (bottom row) for (a), (c) θl and (b), (d) θnl

flow orientations.

in the square arrays. This small disparity is due to the fact
that the spacing between rows in the square arrays is slightly
larger, allowing the centers of the particles to access a broader
distribution of streamlines.

Our findings are at odds with an earlier theoretical study of
tracers in periodic ordered arrays [20], which predicted that
DL/D0 is independent of Pe for nonlattice flow orientations.
The presence of a downturn followed by a second power-law
regime for φ = 0.058 and θnl = {1.25◦, 43.75◦} is consistent
with the behavior observed in a computational study of tracer
transport through two-dimensional square arrays [18]. In that
study, however, the qualitative behavior of DL/D0 was found
to be insensitive to θ for several flow orientations between
0 and 45◦ and no nonmonotonic behavior was observed.
Additionally, we observe that dispersion decreases in both
array types as φ increases, whereas previous studies report the
opposite behavior for tracers in square arrays [19]. Although
the cause for the discrepancy between our results and those
reported in these previous studies [18–20] is unclear, we posit
that it may be due to the use of finite-sized particles rather
than tracers in our study. This hypothesis is supported by sim-
ulations showing that DL/D0 increases monotonically with
Pe for particles of a smaller relative size (dp = dnp/5 at the
same φ = 0.058 and flow orientation θnl = 1.25◦, not shown).
This result is qualitatively consistent with the previous study

of infinitesimal tracers [18], but additional studies are needed
to fully understand the effects of particle size on dispersion
behavior.

IV. CONCLUSIONS

We performed Stokesian dynamics simulations to study
the effects of array geometry and flow orientation on the
transport on finite-sized particles through square and hexag-
onal nanopost arrays. Under quiescent conditions, the particle
diffusivity D0 decays monotonically upon increasing the
nanopost volume fraction φ due to enhanced steric hindrance
and hydrodynamic drag in strong confinement, but is indepen-
dent of the array geometry over the range of φ investigated.
Under flow, the behavior of the normalized longitudinal dis-
persion coefficient DL/D0 depends on the direction of incident
flow relative to the lattice vectors. For lattice flow orientations
θl, DL/D0 exhibits asymptotic scaling behavior (i.e., quadratic
scaling) at large Pe consistent with Taylor-Aris dispersion. For
nonlattice flow orientations θnl, however, the scaling behavior
of DL/D0 is strongly influenced by both φ and flow direc-
tion. Specifically, we observe nonmonotonic dependence of
DL/D0 on Pe for flow angles slightly perturbed away from
the primitive lattice vectors {a, b} for large φ owing to the
competition between directional locking and spatial variations
in fluid velocity.

The simulations in this study provide insights into the
effects of array geometry and flow direction on the transport of
finite-size particles in ordered arrays, similar to those used in
separations techniques such as deterministic lateral displace-
ment [35,36] and hydrodynamic chromatography [37–39].
Although we only included purely repulsive steric interactions
between the particles and nanoposts in our models, other types
of interactions including van der Waals, electrostatic, and de-
pletion forces may also be present in many applied settings.
Additionally, there may be variability in nanopost size and
spacing in experimental systems, resulting in deviations from
the perfectly ordered arrays considered here. Nonetheless,
the effects of different types of particle-nanopost interactions
and structural defects on particle dispersion through nanopost
arrays remain incompletely understood. We anticipate that the
computational techniques and models employed in this study
can be adapted to address these open questions in future work.
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