Differential dynamic microscopy: scattering in an optical microscope

Jacinta Conrad (jcconrad@uh.edu) conradlab.chee.uh.edu University of Houston

Structure and Dynamics of Soft Matter CNMS User Meeting 2015

Collaborators: Firoozeh Babaye Khorasani (UH); *Kai He* (UH/Halliburton); *Jack Jacob* (UH); <u>Ramanan Krishnamoorti (</u>UH); Ryan Poling-Skutvik (UH); Scott Retterer (CNMS/ORNL); *Mohammad Safari* (UH); <u>Peter Vekilov</u> (UH); Maria Vorontsova (UH)

Brightfield movie: diffusing objects invisible

20 *µ*m

Safari, Vorontsova, Poling-Skutvik, Vekilov, and JCC, submitted

Image difference (frames separated by fixed lag time Δt subtracted): fluctuations (= dynamics) readily visualized!

Safari, Vorontsova, Poling-Skutvik, Vekilov, and JCC, submitted

Outline of the tutorial

- 1. Theory
 - i. Heterodyne near-field scattering
 - ii. Differential dynamic microscopy
- 2. Techniques and methods
 - i. Brightfield DDM
 - ii. Variants: fluorescence, confocal DDM, polarized DDM, ghost-particle velocimetry
- 3. Applications
 - i. Complex fluids: nanoparticles, colloids, liquid crystals
 - ii. Biological systems: bacteria and proteins
 - iii. Complex geometries

Heterodyne near-field scattering (HFNS) 1

Near-field scattering (NFS): light scattered from a large collimated beam collected by a close-placed CCD, in which each pixel can be reached by light scattered over all angles

Heterodyne detection: weak fluctuating scattered beam interferes with strong transmitted beam:

ntensity
$$f(\mathbf{r},t) = i_0(\mathbf{r}) + e_0(\mathbf{r})e_S^*(\mathbf{r},t) + e_0^*(\mathbf{r})e_S(\mathbf{r},t) + |e_S(\mathbf{r},t)|^2$$

 $e_0(\mathbf{r})$: static electric field associated with transmitted beam $e_S(\mathbf{r},t)$: time-dependent forward-scattered field

Brogioli, Vailati, and Giglio, *Appl. Phys. Lett.* **81**, 4109-4111 (2002) Ferri, Giglio, *et al.*, Phys. Rev. E **70**, 041405 (2004)

HFNS 2

Subtract the average static contribution: $i_0(\mathbf{r}) = |e_0(\mathbf{r})|^2 = \langle f(\mathbf{r},t) \rangle_t$

$$\delta f(\mathbf{r},t) = f(\mathbf{r},t) - \langle f(\mathbf{r},t) \rangle_t = e_0(\mathbf{r})e_S^*(\mathbf{r},t) + e_0^*(\mathbf{r})e_S(\mathbf{r},t)$$

Fourier transform the image difference:

$$\begin{split} \delta F(\mathbf{q},t) &= E_0(\mathbf{q}) * E_S^*(-\mathbf{q},t) + E_0^*(-\mathbf{q}) * E_S(\mathbf{q},t) \\ &\sim E_S^*(-\mathbf{q},t) + E_S(\mathbf{q},t) \quad \text{(NF: narrow E_0 spectrum)} \\ &\text{necessary condition:} \quad z < D/2\theta_{\max} \end{split}$$
Power spectrum of the heterodyne signal: $|\delta F(\mathbf{q},t)|^2 \sim |E_S(\mathbf{q},t)|^2 + |E_S(-\mathbf{q},t)|^2 + E_S(-\mathbf{q},t)E_S(\mathbf{q},t) + E_S^*(-\mathbf{q},t)E_S^*(\mathbf{q},t)$

vanishes when averaged over time

Mean spectrum:

$$S(q) = \left\langle |\delta F(\mathbf{q}, t)|^2 \right\rangle_{t,q}$$
 with $I_s(Q) \sim S[q(Q)]$
 $q = Q\sqrt{1 - (Q/2k)^2}$

HNFS 3

Apply a differential double-frame analysis (frames separated by time Δt): intensity in frame 1:

$$f_1(\mathbf{r},t) = i_0(\mathbf{r}) + e_0(\mathbf{r})e_1^*(\mathbf{r},t) + e_0^*(\mathbf{r})e_1(\mathbf{r},t)$$

intensity in frame 2:

 $f_2(\mathbf{r}, t + \Delta t) = i_0(\mathbf{r}) + e_0(\mathbf{r})e_2^*(\mathbf{r}, t + \Delta t) + e_0^*(\mathbf{r})e_2(\mathbf{r}, t + \Delta t)$

Calculate the intensity difference:

$$\delta f(\mathbf{r}, t, \Delta t) = e_0(\mathbf{r})e_2^*(\mathbf{r}, t + \Delta t) + e_0^*(\mathbf{r})e_2(\mathbf{r}, t + \Delta t)$$
$$-e_0(\mathbf{r})e_1^*(\mathbf{r}, t) - e_0^*(\mathbf{r})e_1(\mathbf{r}, t)$$

Following the same analytical method:

$$|\delta F(\mathbf{q}, t, \Delta t)|^{2} = |\alpha_{1}|^{2} + |\alpha_{2}|^{2} + \alpha_{1}\alpha_{2}^{*} + \alpha_{1}^{*}\alpha_{2}$$

$$\alpha_{1} = E_{1}^{*}(-\mathbf{q}, t) + E_{1}(\mathbf{q}, t)$$

$$\alpha_{2} = E_{2}^{*}(-\mathbf{q}, t + \Delta t) + E_{1}(\mathbf{q}, t + \Delta t)$$

Double frame analysis removes some of the limitations associated with fluctuations in the intensity signal, but Δt must be carefully chosen

Differential dynamic microscopy (DDM)

Differential dynamic microscopy: dynamic heterodyne near-field scattering: fluctuations in the Fourier intensity difference spectrum signal are analyzed as a function of Δt

$$|\delta F(\mathbf{q}, t, \Delta t)|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \alpha_1 \alpha_2^* + \alpha_1^* \alpha_2$$

"vanishing" terms (in temporally-averaged HFNS) describe decorrelation of intensity fluctuations

Cerbino and Trappe showed, for a collection of scattering particles, a single Fourier decay mode satisfied:

$$|\delta F(q;\Delta t)|^2 = A(q) \left[1 - \exp\left(-\Delta t/\tau(q)\right)\right] + B(q)$$

More generally, this is the intermediate scattering function measured in dynamic light scattering

$$|\delta F(q;\Delta t)|^2 = A(q) \left[1 - f(q;\Delta t)\right] + B(q)$$

intermediate scattering function ISF

References:

Cerbino and Trappe, *Phys. Rev. Lett.* **100**, 188102 (2008) Giavazzi, Cerbino, *et al.*, *Phys. Rev. E* **80**, 031403 (2009)

Methods and variations

Giavazzi, Cerbino, et al., Soft Matter 10, 3938-3949 (2014)

Brightfield DDM: processing

1. Subtract images separated by fixed lag time:

 $\delta f(x, y; \Delta t) = f(x, y; t + \Delta t) - f(x, y; t)$

2. Fourier transform image differences:

$$S(u_x, u_y; \Delta t) = \left\langle \left| \delta I(u_x, u_y; \Delta t) \right|^2 \right\rangle$$

3. Azimuthally average to obtain image structure function:

 $S(u_x, u_y; \Delta t) \to S(q, \Delta t)$

4. Fit structure function to obtain intermediate scattering function ${}^{10^{-2}}$ $S(q, \Delta t) = A(q) [1 - f(q, \Delta t)] + B(q)$

Framework also works for other linear space-invariant imaging methods (fluorescence DDM)

Example: particle dynamics

System: polystyrene nanoparticles (73 nm and 420 nm)

Fitting model:

signal
$$S(q, \Delta t) = A(q) \left[1 - \exp\left\{ -\frac{\Delta t}{\tau(q)} \right\} \right] + B(q)$$
$$\operatorname*{camera noise}$$

Key result: Diffusivity of submicron particles can be measured using DDM

Cerbino and Trappe, Phys. Rev. Lett. 100, 188102 (2008)

Considerations for running experiments

1. Range of accessible wave vectors

Acquisition frame rates: 63, 120 fps

2. Signal-to-noise ratio			Volume fraction, φ	Diffusion coefficient ($\mu m^2 s^{-1}$)		
		NP diameter		b-DDM	f-DDM	DLS
		400 nm	1×10^{-3}	0.96 ± 0.06	0.95 ± 0.04	
			1×10^{-4}	0.94 ± 0.05	0.95 ± 0.06	
			1×10^{-5}	0.95 ± 0.03	0.94 ± 0.05	0.92 ± 0.06
			1×10^{-6}	0.93 ± 0.02	0.96 ± 0.06	0.97 ± 0.05
$\frac{A(q)}{B(q)} \ge$	0.07 (f-DDM)	200 nm	1×10^{-3} 1×10^{-4}	1.88 ± 0.10 1.89 ± 0.12	1.89 ± 0.10 1.92 ± 0.10	
			1×10 1×10^{-5}	1.09 ± 0.12 1.92 ± 0.06	1.92 ± 0.10 1.92 ± 0.11	$\frac{-}{201+0.06}$
	0.2 (b-DDM)		1×10^{-6} 1×10^{-6}	1.92 ± 0.00 1.93 ± 0.07	1.92 ± 0.11 1.89 ± 0.27	2.01 ± 0.00 2.01 ± 0.05
		100 nm	1×10^{-3}	3.83 ± 0.11	3.91 ± 0.14	
			1×10^{-4}	3.79 ± 0.09	3.71 ± 0.20	
			1×10^{-5}	3.60 ± 0.14	Immeasurable	3.83 ± 0.06
			1×10^{-6}	3.60 ± 0.34	Immeasurable	3.87 ± 0.09

He, Spannuth, JCC, and Krishnamoorti, Soft Matter 8, 11933-11938 (2012)

Variants: confocal DDM

Modification: analyze time series of confocal micrographs

Useful for: obtaining structure factors and dynamics in dense and/ or opaque samples that are multiply-scattering

Lu, Cerbino, et al., Phys. Rev. Lett. 108, 218103 (2012)

Variant: polarized DDM

Modification: insert polarizer and analyzer into the beam path

Attribution 3.0 Unported Licence.

nloaded on 30/07/2014 01:21:26. **Useful for:** optically-anisotropic systems (liquid crystals) Giavazzi, Cerbino, et al., Soft Matter 10, 3938-3949 (2014)

Variant: ghost-particle velocimetry

Modification: use cross-correlation to analyze the NF speckle pattern

$$G_{\mathbf{x},t}\left(\Delta t;\Delta \mathbf{x}\right) = i(t,\mathbf{x} + \mathbf{\Delta x})i(t + \Delta t,\mathbf{x} + \mathbf{\Delta x})$$

Velocity: obtained from well-defined peak at $\Delta x = V \Delta t$

Useful for: obtaining flow profiles in turbid flowing systems

Buzzacaro, Secchi, and Piazza, Phys. Rev. Lett. 111, 048101 (2013)

Application area 1: complex fluids

73 nm polystyrene nanoparticles in water

Cerbino and Trappe, *Phys. Rev. Lett.* **100**, 188102 (2008)

I: static structure factor

System: index-matched PMMA particles in a ternary solvent mixture

Method: confocal DDM

Representative data: measurements of the (static) structure function S(q)

 $S(q) = \phi_{\rm dil} A(q) / \phi A_{\rm dil}(q)$

Key result: simultaneous measurements of S(q) and $\tau(q)$ allow direct measurements of hydrodynamics

$$\tau_S(q) = (D_0 q^2)^{-1} S(q) / H(q)$$

Lu, Weitz, Cerbino, et al., Phys. Rev. Lett. 108, 218103 (2012)

I: fractal aggregation

System: polystyrene nanoparticles aggregated with MgCl₂

Method: brightfield DDM

Representative data:

measurements of τ_{eff} versus q

Key result: Clusters grow with a fractal dimension consistent with diffusion-limited cluster aggregation

I: arrested dynamics

System: thermoreversible colloidal gel (nanoemulsion o/w droplets with thermoresponsive end-functionalized polymers)

Method: brightfield DDM

Fitting model: $S(q, \Delta t) = A(q) \left[1 - a(q) \exp\left\{ -\left(\frac{\Delta t}{\tau_1(q)}\right) \right\}^{\frac{10^6}{50}} \right]^{10^4} - (1 - a(q) \exp\left\{ -\left(\frac{\Delta t}{\tau_2(q)}\right)^{\beta} \right\}^{10^4} \right]^{10^4}$

Key result:

Coarsening dynamics exhibit two distinct time scales, slow and fast

Gao, Kim, and Helgeson, *Soft Matter* **11**, 6360-6370 (2015)

I: anisotropic colloids

1E-3

System:

Silica-coated hematite nanoparticles (a = 175 nm, b = 52 nm)

Method: brightfield DDM

magnetic field B = 430 mT

 $S(\mathbf{q}, \Delta t) = 2N|A(\mathbf{q})|^2 S(\mathbf{q})$ [1]

Representative data:

 $q = 5.56 \,\mu m^{-1}$

0.01

0.1

τ **[S]**

Key result: D_{II} , D_{\perp} as a function of field strength B

Reufer, Poon, et al., Langmuir 28, 4618-4624 (2012)

I: liquid crystals

System: liquid crystals (6CB)

Method: polarized DDM

Fitting model for the ISF: $g(\mathbf{q}, \Delta t) = g_{\mathbf{q}}^{*}(\mathbf{q}) \exp\left\{-\Gamma_{1}(\mathbf{q})\Delta t\right\}$ l on 30/07/2 Attilibution $g_2(\mathbf{q}) \exp\left\{-\Gamma_2(\mathbf{q})\Delta t\right\}$ Relationship between Γ_1 , Γ_2 and elastic constants depends on polarizer configuration **Key result:** astic constants K₁₁, K₂₂, K₃₃ as a function of temperature

Giavazzi, Cerbino, et al., Soft Matter 10, 3938-3949 (2014)

Application area 2: biofluids

Movie: M. Gibiansky, JCC, and F. Jin (old, not DDM, but shows my point)

II: bacterial dynamics (i)

System: swimming *Escherichia coli* bacteria

Method: brightfield DDM

Fitting model for the ISF:

$$f(q, \Delta t) = e^{-Dq^2 \Delta t} \left[(1 - \alpha) + \alpha \int_0^\infty P(v) \frac{\sin(qv\Delta t)}{qv\Delta t} dv \right]_z$$

Key result:

Diffusivity and motile fraction of swimming cells as a function of swimmer volume fraction

Wilson, Poon, et al., Phys. Rev. Lett. 106, 018101 (2011)

II: bacterial dynamics (ii)

Key result: Diffusion coefficients of nonmotile cells

$$D_{\parallel} = D_{\rm iso} + \frac{2}{3} (D_a - D_b) S_2(h)$$
$$D_{\perp} = D_{\rm iso} - \frac{1}{3} (D_a - D_b) S_2(h)$$

Reufer, Poon, et al., Biophys. J. 106, 37-46 (2014)

II: protein cluster diffusivity

Safari, Vorontsova, Poling-Skutvik, Vekilov, and JCC, submitted

Application area 3: complex geometries

Movie credit: K. He; fabrication credit: K. He and S. T. Retterer He, Babaye Khorasani, Retterer, Thomas, JCC, and Krishnamoorti, *ACS Nano* 7, 5122-5130 (2013)

III: complex geometries (i)

S=1.6 μm, ζ=0.270 S=8 μm, ζ=0.051 **System:** Polystyrene nanoparticles diffusing in an array of nanoposts q=8 μm⁻¹ q=8 μm⁻¹ --- E --- E (edge-to-edge spacing: $> 1 \ \mu m$) S(q,Δt) (a.u.) - SE Method: Fluorescence DDM Fitting model: q=2 μm⁻¹ q=2 μm⁻¹ $S(q,\Delta t) = A(q) \left| 1 - \exp\left\{ -\left(\frac{\Delta t}{\tau(q)}\right)^{r(q)} \right\} \right|$ SE 10⁻² 10⁻¹ 10⁰ 10¹ 10⁻² 10⁻¹ 10⁰ 10¹ Δt (sec) Δt (sec) +B(q)1.0 °^{0.9} 0/0 **Key result:** Particle diffusion slows and stretches in 0.8 SPT DDM SPT confinement 400 nm 400 nm 🗆 400 nm 400 nm 🗆 300 nm 300 nm 200 nm 200 nm 0.7 0.2 0.7 0.8 0.9 1.0 0.1 0.3 0 0.4 $\zeta = d_{NP} / S$ Void fraction (θ)

He, Babaye Khorasani, Retterer, Thomas, JCC, and Krishnamoorti, ACS Nano 7, 5122-5130 (2013)

Applications: complex geometries (ii)

System: Polystyrene nanoparticle: diffusing in an array of nanoposts (edge-to-edge spacing: $< 1 \ \mu$ m)

Method: Fluorescence DDM

Representative DDM data:

isotropic dynamics in nanopost arrays

Key result: Hydrodynamic models for slit diffusion describe slowing of diffusion in nanopost arrays

Dimensionless pore diameter

Conclusions, thoughts, and opportunities

- Differential dynamic microscopy (DDM) yields measurements of dynamics of nanoscale (≥50 nm) objects over a wave vector range of (approximate) 0.1 ≤ q ≤ 10 µm⁻¹
- Advantages of DDM
 - Submicron (sub-optical-resolution) dynamics
 - Simple equipment (white light source, microscope, camera)
 - Challenging samples: dense, opaque, multiply-scattering
- Disadvantages of DDM
 - Inversion problem (but builds on years of DLS analysis)
- Opportunities and challenges
 - Other soft materials (polymers? emulsions? cells?)
 - Further adaptions of existing light-scattering methods

Backup DDM slides

Practical considerations for DDM expts

1. Finite thickness of sample chamber:

$$L_{\min} > \frac{1}{\Delta q}$$
 (Δq : wavevector uncertainty)

2. Temporal incoherence: minimize source numerical aperture

 $N_A \ll 1$

3. Spatial incoherence: examine wave vectors satisfying

 $q \ll \frac{1}{\Delta \lambda}$ (microscope lamp: $\Delta \lambda \approx 0.1 \ \mu$ m)

4. Sufficient heterodyne signal: ratio of signal-to-noise terms

$$\frac{A(q)}{B(q)} > 0.05$$

5. Minimum and maximum wave vectors

$$q_{\min} = \frac{2\pi}{\max(l_x, l_y)}$$
 $q_{\max} = \min\left(\sqrt{\text{frame rate}/D}, 2\pi n \sin(\theta_{\max})/\lambda\right)$

1-3: Giavazzi, Cerbino, *et al.*, *Phys. Rev. E* **80**, 031403 (2009) 4, 5: JCC and collaborators