Lecture 1: Phase transitions explored in soft-matter systems

S-RSI Physics Lectures: Soft Condensed Matter Physics

> Jacinta C. Conrad University of Houston 2012

> > 1

What is **condensed matter**?

- High energy physics: study of <u>fundamental particles</u> that make up matter (quarks, neutrinos, photons, electrons, gluons, bosons, etc.)
- Atomic/molecular/optical: study of the physical properties of single atoms and molecules (hydrogen, helium) and their interactions with light
- Astrophysics: study of the physical properties and interactions of <u>celestial objects</u> (galaxies, stars, etc.)
- Condensed matter: study of macroscopic properties of matter (especially with large numbers of strongly interacting particles)

What is **soft** condensed matter?

- Solid-state physics
 - Primarily concerned with <u>crystals</u>: atoms in a regular solid-like arrangement
 - Phase transitions: how the <u>phase</u> of a system changes in response to an external parameter (e.g. melting)
- Soft-matter physics
 - Concerned with materials whose mechanical properties are intermediate between solids/liquids/gases
- Soft-matter physics is closely related to:
 - *Nanotechnology:* How physical properties change as materials are made very small
 - *Biophysics*: Physical properties of biological systems

Soft condensed matter physics

Lecture 1: statistical mechanics and phase transitions via colloids

5

- · Lecture 2: fluid mechanics for physicists
- · Lecture 3: physics of bacteria
- Lecture 4: biophysics of cell mechanics
- Lecture 5: Dr. Conrad's work

<section-header><section-header>Agass is a solid in which the atoms or molecules
are not arranged in a regular lattice – structurally,
the solid glass "looks" like the liquidMaterials applications:
e.g. SiO2Polymer glasses:
e.g. polycarbonatesMetallic glasses:
sually alloysOxide glasses:
e.g. SiO2Polymer glasses:
e.g. polycarbonatesMetallic glasses:
sually alloysOriginal for the solid glassePolymer glasses:
e.g. polycarbonatesMetallic glasses:
sually alloysOxide glassePolymer glasses:
e.g. polycarbonatesMetallic glasses:
sually alloysOver the solid glassePolymer glasses:
e.g. polycarbonatesMetallic glasses:
sually alloysOver the solid glassePolymer glasses:
e.g. polycarbonatesMetallic glasses:
usually alloysOver the solid glassePolymer glasses:
e.g. polycarbonatesMetallic glasses
usually alloysOver the solid glassePolymer glasses
e.g. polycarbonatesMetallic glasses
usually alloysOver the solid glassePolymer glasses
e.g. polycarbonatesPolymer glasses
to polycarbonatesOver the solid glassePolymer glasse
to polycarbonatesPolymer glasses
to polycarbonatesOver the solid glassePolycarbonatesPolycarbonatesOver the solid glasse</

Big question for today's lecture
How does a disordered liquid become a disordered glass? and how can soft matter contribute to the study of phase transitions?
7

What drives phase transitions? 1

Total energy of a water molecule: sum of potential energy and kinetic energy

E = U + K

Apply thermodynamics and the kinetic theory of gases:

Ideal gas law:

 $PV = Nk_BT$ $P = \frac{Nm\overline{v^2}}{3V}$

Equate to obtain expression for kinetic energy:

(derivation: conservation of momentum):

Result: kinetic energy depends on the temperature of the system

From kinetic theory of gases

 $P = \frac{Nmv^2}{3V}$ $K \equiv \frac{1}{2}N\overline{v^2} = \frac{3}{2}Nk_BT$ P: pressure V: volume N: number of molecules $k_B: \text{ Boltzmann constant}$ T: temperature v: velocity

What drives phase transitions? 2

9

Changes in importance of contributions to total energy

- At high temperatures (T > 100C): Gas has mostly kinetic energy
 - Potential energy (interactions) unimportant
- · As temperature lowered: Attractive interactions become more important
 - Increase in correlations between molecules (pairs, triplets)
 - Correlations lead to deviations from ideal gas law
- Transition to liquid water occurs when clusters become permanent
 - Contributions to energy: interparticle attraction + kinetic energy + short-range repulsion
 - Competition between attraction (packing of molecules) and repulsion (minimum separation between molecules)
- Transition to <u>solid ice</u> resolves this competition by creating a regular packing of molecules
 - Higher-density ordered state (large attractive contribution) state still satisfying minimum-distance constraint (repulsion)

Simplified interactions: hard spheres		
	We will consider a simplified model for interparticle interactions: <u>hard spheres</u>	
Intermolecular potential <i>U</i>	1. Infinite <u>repulsion</u> at contact ($r = 0$) 2. No interaction for $r > 0$	
	To study phase behavior, need a <u>model system</u> of small particles that exhibit thermal fluctuations	
	Separation r	
	Real-world analogy: billiard balls	
12		

Glass transition related to arrest of particles

Measure the dynamics as a function of time via the <u>mean-square</u> <u>displacement</u> (MSD):

$$\left< \Delta x^2 (\Delta t) \right> = \left< (x(t + \Delta t) - x(t))^2 \right>_t$$

The dynamics of particles in liquids and glasses are different:

Cage escape and relaxations

Microscopically: particles in a liquid can relax in a finite amount of time

Prediction: dynamical heterogeneities

Hypothesis: the glass transition is driven by <u>dynamic arrest</u>: the size of cage rearrangements needed to allow the system to flow increases as the system becomes more concentrated

First shown using computer simulation models: only particles that move large distances over a time t* are shown:

$$|r(t^*) - r(0)|$$

Experiments: colloidal glasses

Experimentally: identify 5% fastest particles by their total displacement:

 $|r(t^*) - r(0)|$

Hypothesis: If the size of the rearranging region is important, then <u>confining</u> the sample between parallel walls should change the volume fraction at which a liquid becomes a solid glass

Brief summary for spheres

- Colloidal model systems can be used to study the liquid-tosolid glass transition.
- Supercooled fluids relax cooperatively, with relaxing particles forming stringlike chains.
- As the glass transition is approached (by increasing concentration), the size of cooperatively relaxing regions increases.
- Confining a glass leads to an earlier onset of solid behavior, because the size of the relaxing regions reaches that of the container at lower volume fractions.

23

Improved model: non-spherical particles

Molecules containing more than one particle are not typically spherical; other shapes provide a better approximation of the effects of <u>shape</u> on the glass transition.

Work of Chaikin (NYU) and Torquato (Princeton); Donev *et al.*, Science (2004)

24

What needs to be incorporated?

- Interparticle interactions
 - Uniform interactions
 - Non-uniform (polar and dipolar)
- Extended macromolecules
 - Models for polymers
 - Analogies between polymer glasses (entanglement) and colloidal glasses (crowding)
- Theoretical treatments
 - Descriptions of structural order in glasses
 - Relationship between structure and dynamics
 - Thermodynamics of phase transitions