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Soft condensed matter physics

• Lecture 1: statistical mechanics and phase transitions via 
colloids

• Lecture 2: (complex) fluid mechanics for physicists

• Lecture 3: physics of bacteria motility

• Lecture 4: viscoelasticity and cell mechanics

• Lecture 5: Dr. Conrad!s work
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Big question for today!s lecture
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How does the fluid mechanics of complex 
fluids differ from that of simple fluids?

Petroleum

Paints and coatingsCeramic precursorsPersonal care products

Food products

Examples of 
complex fluids:



Topic 1: shear thickening
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�
�F = m�a =

d�p

dt

�a =

d�v

dt

�p = m�v

�n

Forces and pressures
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A force causes an object to change velocity (either in magnitude or 
direction) or to deform (i.e. bend, stretch). 

Newton!s second law:

net force
mass

acceleration

change in linear 
momentum over time

A pressure is a force/unit area applied perpendicular to an object. 
Example: wind blowing on your hand.

: unit vector normal to the surfacedirection of pressure force



δAx

Stress
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τxy = lim
δAx→0

δFy

δAx

τxx = lim
δAx→0

δFx

δAx

Convention: first subscript indicates plane on which stress acts; 
second subscript indicates direction in which the stress acts.

A stress is a force per unit area that is measured on an infinitely 
small area. Because forces have three directions and surfaces 
have three orientations, there are nine components of stress.

δAx

Example of a 
normal stress:

Example of a 
shear stress:

Newtonian fluid

8

Definition: a Newtonian fluid is a fluid in which the stress (units of 
force/area) is linearly proportional to the strain rate (units of 1/time)

δl

δα

δx

δy

δFx

δv

x

y

τyx = lim
δAy→0

δFx

δAy

=
dFx

dAy

lim
δt→0

δα

δt
=

dα

dt

Shear stress: 

Deformation rate:

Force
Velocity

δl = δvδt = δyδα
δα

δt
=

δv

δy

dα

dt
=

dv

dy

Mathematically, a Newtonian fluid satisfies τyx = µ
dv

dy

where the proportionality constant is the viscosity of the fluid.

(Stress on surface normal 
to x in the y direction)



Types of non-Newtonian flows
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A non-Newtonian fluid is 
one in which the stress is 
not linearly proportional to 
the strain rate.

This implies that for non-
Newtonian fluids, the 
viscosity is not constant but 
instead depends on the 
shear rate (or stress) 
applied.

Shear-thickening and -thinning

10

Definition: in a shear-thickening fluid, the viscosity is not a 
constant but instead increases with increasing strain rate (or with 
increasing stress).
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Review article: Wagner and Brady, Phys. Today (2009)



Example: shear-thickening fluid
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University of Chicago (Terry Bigioni, Eric Corwin, Matthias Mobius)

Definition: in a shear-thickening fluid, the stress increases as the 
strain rate is increased. Recent application: pothole repair.

Application of shear-thickening colloids
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“Silly putty” for 
pothole repair
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Colloidal body armor
Wagner group (Delaware)

Case Western Reserve undergraduates



Question for physicists: microscopics?
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Hypothesis: shear-thickening results from the formation of 
hydroclusters: clusters of particles that form when the fluid between 
them is expelled at high shear rates.

Melrose and Ball, J. Rheol. (2004)
Review article: Wagner and Brady, Phys. Today (2009)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
  

 
 

 

 

 

 

Direction of shear

Snapshot of hydroclusters 
observed in simulations
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Hydroclusters in colloids

14Cheng et al., Science (2011)

D

 
 

 
 

 
 

Mathematically, characterize clusters 
by making a histogram of the number 
of particles in a cluster:
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Shear thickening is general to suspensions
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Shear thickening can be shown to exist in colloids and granular 
media (large particles of size >10 µm) and is suppressed when the 
particles are made sticky:

Brown et al., Nat. Mater. (2010)
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Summary and open questions
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• Repulsive suspensions undergo shear-thickening at high 
shear rates.

• Shear thickening results from the formation of hydroclusters.

• Turning on an attraction between the particles induces 
permanent clusters and suppresses hydrocluster formation 
and shear-thickening.

• What happens with other interparticle interactions?

- Polymer brushes (steric stabilization)

- Patchy particles or colloidal molecules



Topic 2: low Reynolds number flows
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�
�F = m�a = m

d�p

dt

�F �a =

d�v

dt
≈

∆�v

∆t
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Basic mechanics: Newton!s second law 

The net force felt by an object is proportional to its mass and is 
proportional to and parallel to its acceleration:

This equation applies to a single particle or to a single extended 
body.



Issue with applying Newton!s law to fluids
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Newton!s law was developed for single particles and can be 
extended to small numbers of particles.

However: a flowing volume of fluid contains "1023 (Avogadro!s 
number) of individual particles.  No techniques exist for computing 
forces over this number of particles.

Solution: move from looking at a fixed system (number of particles) 
to a fixed volume (of space) through which particles move. 

control volumecontrol system

Two ways to have a physical 
property (e.g. mass, 
momentum) change inside the 
control volume:
• change inside the control 

volume over time
• change by flow through the 

control surface

Reynolds Transport Theorem
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• Term 1: rate of change of any arbitrary extensive property of 
the system

• Term 2: time rate of change of arbitrary extensive property N, 
with ! the corresponding intensive property

• Term 3: net rate of flux of extensive property N out through the 
control surface

dN

dt

�

�

�

�

sys

=
∂

∂t

�

CV

ηρ dV +

�

CS

ηρv·dA

1 2 3

REYNOLDS TRANSPORT 
THEOREM:

For an arbitrary extensive variable N (e.g. 
mass) with corresponding intensive 
quantity !:

Nsys =

�

Msys

η dm =

�

Vsys

ηρ dV

N 
(extensive)

! 
(intensive)

M 1
P v
L r ! v
E e
S s



The Navier-Stokes equations
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The Navier-Stokes equations are a local form of Newton!s law 
(conservation of momentum) expressed in control-volume form.

ρ

�

∂v

∂t
+ v ·∇v

�

= −∇p + µ∇2
v + ρg

body forces
(typically gravity)viscositypressure

unsteady 
acceleration

convective 
acceleration

inertia divergence 
of stress

Note: on the left-hand side, the two terms represent change in the 
local momentum over time (“inside the control volume”) and 
momentum flux (“through the surface”)

�r� =

�r

L

�v�
=

�v

V

p� =

p

ρV 2

Scaling and dimensional analysis

22

The Navier-Stokes equations are coupled nonlinear partial 
differential equations and few analytic solutions exist.  Identifying 
the most important term for a particular problem allows the 
equations to be dramatically simplified.

We first identify typical length and velocity scales (that give the 
order of magnitude of characteristic lengths and velocities in a 
problem) and create new variables that are dimensionless:

Dimensionless position:

Dimensionless velocity:

Dimensionless pressure (from unit analysis):



The Reynolds number
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ρ
∂v

∂t
+ ρv ·∇v = −∇p +

1

Re
∇

2
v + f

After all of the variables in the Navier-Stokes equations are made 
dimensionless, one parameter appears:

Re =

" = density of the fluid
V = typical order-of-magnitude of velocity
L = typical order-of-magnitude of length
# = viscosity of the fluid

The Reynolds number can be represented as the ratio of two 
forces, the inertial force (F = ma) and the viscous force (stress 
area):

=

ρV 2L2

µV L
=

ρV L

µ
Reynolds number Re = 

inertial force
viscous force

ρV L

µ

High Reynolds number: turbulent flow

24YouTube: user guiathome



Turbulence: still an unsolved problem!
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Large-scale question: what drives the formation of turbulent flow?
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Old hypothesis: increase in the 
complexity of the time-dependence of 
the fluid motion.

New hypothesis: spatial proliferation 
of domains of chaos, similar to a 
phase transition (as discussed in the 
last lecture).

Current research: study turbulence 
using methods from non-equilibrium 
phase transitions (like glasses).

Re = 2300

Re = 2450

Avila et al., Science (2011)

Low Reynolds number flows: microfluidics

26Folch lab (University of Washington)

Typical channel 
diameter: 100 µm



L ∼ 100µm

µ ∼ 1mPa − s

ρ ∼ 1 g/mL
Re ∼ 0.1

V ∼ 1 mm/s

First example: microfluidic flows
Microfluidic flows: fluid flows in channels with typical dimensions ~100 #m

Calculate typical Reynolds numbers for flow above (water drops in oil):

200 !m

Typical length:

Typical viscosity:

Typical density:

Typical velocity:

Conrad et al., unpublished
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Example: how fluid physics changes
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Question to consider: how to efficiently mix fluids in devices with 
micron-sized channels?

In macroscale flows, turbulence helps to mix two fluids.  Think of 
making an emulsion of oil and water by rapidly shaking the two 
fluids.

At low Re, fluid interfaces remain laminar and mixing occurs by 
diffusion:

where the units of D0 are [length2/time].
• D0 for 1 #m particle: 2 # 10-13 m2/s

- Time to diffuse L = 100 #m: 5 # 106 s

• D0 for 1 nm particle: 2 # 10-10 m2/s

- Time to diffuse L = 100 #m: 5 # 103 s

D0 =
kBT

6πµa

Examples:



Mixing via designed turbulence

29Stroock et al., Science (2002)

Strategy: fabricate micromixers within a microfluidic device that 
stretch and fold the fluid and enhance mixing, similar to how 
turbulence mixes a fluid:

Mixing and folding of fluid elements
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Kelley and Ouellette, Nat. Phys. (2011)

Stretching: short-time linear 
affine deformation
• Composed of rotation, 

shear, dilation, 
compression  

Folding: long-time nonlinear 
non-affine deformation
• Requires irreversible 

rearrangements in the fluid

By mathematical analysis of 
the ratio of affine to non-affine 
transformation, can show that 
folding (non-affine) 
deformations occur only after 
elongation (i.e. at long times).



Summary and open questions
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• Turbulence is still an unsolved problem, but shares features 
with non-equilibrium phase transitions.

• Flows in microfluidic devices are at low Reynolds number, and 
flows are typically laminar (not turbulent).

• Mixing therefore requires special structures to irreversibly 
deform the fluid on long times.

- What engineered structures create fastest mixing?


