

Lecture 2: (complex) fluid mechanics for physicists

S-RSI Physics Lectures: Soft Condensed Matter Physics

> Jacinta C. Conrad University of Houston 2012

Note: I have added links addressing questions and topics from lectures at:

http://conradlab.chee.uh.edu/srsi_links.html Email me questions/comments/suggestions!

Soft condensed matter physics

- Lecture 1: statistical mechanics and phase transitions via colloids
- Lecture 2: (complex) fluid mechanics for physicists

3

- Lecture 3: physics of bacteria motility
- Lecture 4: viscoelasticity and cell mechanics
- Lecture 5: Dr. Conrad's work

Forces and pressures

A <u>force</u> causes an object to change <u>velocity</u> (either in magnitude or direction) or to <u>deform</u> (i.e. bend, stretch).

Newton's second law: $\sum_{\substack{n \in I \\ n \in I}} \vec{F} = m\vec{a} = \frac{d\vec{p}}{dt} \qquad \vec{p} = m\vec{v}$ change in linear momentum over time acceleration $\vec{a} = \frac{d\vec{v}}{dt}$ A pressure is a force/unit area applied perpendicular to an object.

Example: wind blowing on your hand.

direction of pressure force \vec{n} : unit vector normal to the surface

Stress

A <u>stress</u> is a <u>force per unit area</u> that is measured on an infinitely small area. Because forces have three directions and surfaces have three orientations, there are nine components of stress.

Shear-thickening and -thinning

Definition: in a <u>shear-thickening</u> fluid, the viscosity is not a constant but instead increases with increasing strain rate (or with increasing stress).

Example: shear-thickening fluid

Definition: in a shear-thickening fluid, the stress increases as the strain rate is increased. Recent application: pothole repair.

12

Wagner group (Delaware)

Question for physicists: microscopics?

Hypothesis: shear-thickening results from the formation of <u>hydroclusters</u>: clusters of particles that form when the fluid between them is expelled at high shear rates.

Shear thickening is general to suspensions

Shear thickening can be shown to exist in colloids and granular media (large particles of size >10 μ m) and is suppressed when the particles are made <u>sticky</u>:

Basic mechanics: Newton's second law

The <u>net force</u> felt by an object is proportional to its mass and is proportional to and parallel to its acceleration:

$$\sum \vec{F} = m\vec{a} = m\frac{d\vec{p}}{dt}$$
$$\vec{F} \longrightarrow \vec{a} = \frac{d\vec{v}}{dt} \approx \frac{\Delta \vec{v}}{\Delta t}$$

This equation applies to a <u>single</u> particle or to a single extended body.

Issue with applying Newton's law to fluids

Newton's law was developed for single particles and can be extended to small numbers of particles.

However: a flowing volume of fluid contains ≈10²³ (Avogadro's number) of individual particles. No techniques exist for computing forces over this number of particles.

Solution: move from looking at a fixed system (number of particles) to a fixed volume (of space) through which particles move.

Two ways to have a physical property (e.g. mass, momentum) change inside the control volume:

- change inside the control volume over time
- change by flow through the control surface

control volume

19

The Navier-Stokes equations

The <u>Navier-Stokes</u> equations are a local form of Newton's law (conservation of momentum) expressed in control-volume form.

Scaling and dimensional analysis

The Navier-Stokes equations are <u>coupled nonlinear partial</u> <u>differential equations</u> and few analytic solutions exist. Identifying the most important term for a particular problem allows the equations to be dramatically simplified.

We first identify typical <u>length</u> and <u>velocity</u> scales (that give the order of magnitude of characteristic lengths and velocities in a problem) and create new variables that are <u>dimensionless</u>:

Dimensionless position: $\vec{r'} = \frac{\vec{r}}{L}$ Dimensionless velocity: $\vec{v'} = \frac{\vec{v}}{V}$ Dimensionless pressure (from unit analysis): $p' = \frac{p}{\rho V^2}$

The Reynolds number

After all of the variables in the Navier-Stokes equations are made dimensionless, one parameter appears:

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \frac{1}{\mathrm{Re}} \nabla^2 \mathbf{v} + \mathbf{f}$$

 $\operatorname{Re} = \frac{\rho V L}{\mu} \qquad \begin{array}{l} \rho = \text{density of the fluid} \\ V = \text{typical order-of-magnitude of velocity} \\ L = \text{typical order-of-magnitude of length} \\ \mu = \text{viscosity of the fluid} \end{array}$

The Reynolds number can be represented as the ratio of two forces, the <u>inertial</u> force ($\mathbf{F} = \mathbf{ma}$) and the <u>viscous</u> force (stress area):

Reynolds number Re = $\frac{\text{inertial force}}{\text{viscous force}} = \frac{\rho V^2 L^2}{\mu V L} = \frac{\rho V L}{\mu}$

Example: how fluid physics changes

In macroscale flows, turbulence helps to mix two fluids. Think of making an <u>emulsion</u> of oil and water by rapidly shaking the two fluids.

Question to consider: how to efficiently <u>mix</u> fluids in devices with micron-sized channels?

At low Re, fluid interfaces remain laminar and mixing occurs by <u>diffusion</u>:

 $D_0 = \frac{k_B T}{6\pi\mu a}$

where the units of D_0 are [length²/time].

- D₀ for 1 μ m particle: 2 × 10⁻¹³ m²/s
- Examples:
- Time to diffuse L = 100 $\mu m: 5 \times 10^6 \mbox{ s}$
- D₀ for 1 *n*m particle: 2 × 10⁻¹⁰ m²/s
 - Time to diffuse L = 100 μ m: 5 × 10³ s

Mixing via designed turbulence

Strategy: fabricate <u>micromixers</u> within a microfluidic device that stretch and fold the fluid and enhance mixing, similar to how turbulence mixes a fluid:

Summary and open questions

- Turbulence is still an unsolved problem, but shares features with <u>non-equilibrium phase transitions.</u>
- Flows in microfluidic devices are at <u>low Reynolds number</u>, and flows are typically laminar (not turbulent).
- Mixing therefore requires special structures to irreversibly deform the fluid on long times.

31

- What engineered structures create fastest mixing?