Teaser movie: Twitching

Twitching is one type of gliding: a near-surface motility mechanism, driven by <u>irregular</u> and <u>jumpy</u> cellular motion.

Lecture 5: confined nanoparticles and walking bacteria

S-RSI Physics Lectures: Soft Condensed Matter Physics

> Jacinta C. Conrad University of Houston 2012

Note: I have added links addressing questions and topics from lectures at: http://conradlab.chee.uh.edu/srsi_links.html Email me questions/comments/suggestions!

2

Soft condensed matter physics

Lecture 1: statistical mechanics and phase transitions via colloids

3

- · Lecture 2: (complex) fluid mechanics for physicists
- Lecture 3: physics of bacteria motility
- Lecture 4: viscoelasticity and cell mechanics
- Lecture 5: Dr. Conrad's work

Topic 1: nanoparticle transport

How do nanoparticles and colloids change their behavior when moving in porous media?

Students:

Kai He

Firoozeh Babaye Khorasani Rahul Pandey

in collaboration with Ramanan Krishnamoorti (UH) $_{_6}$

Differential dynamic microscopy

Key idea: <u>subtract</u> microscopy images in a time series, and analyze the changes in intensity.

Open question: effect of confinement?

Topic 2: walking bacteria

How do microbial species <u>attach to and/or</u> <u>move on</u> surfaces?

Students:

Sumedha Sharma Jinsu Kim in collaboration with Gerard Wong (UCLA), Richard Willson (UH), Debora Frigi Rodrigues (UH)

Image: D. Davis / MSU CBE

 Motility affects biofilm morphology
P. aeruginosa and isogenic knockout mutant strains
wild-type
Klausen <i>et al.</i> , Mol. Microbiol. 48 , 1511-1524 (2003)
Question: how does motility affect biofilm formation?

How would you move with grappling hooks?
22

Deposition of bacteria during flow

Approach: study deposition of bacteria on engineered surfaces using different flow geometries.

Detecting phages on surfaces

Summary

- We work on problems surrounding the interaction of <u>particles</u> with <u>surfaces</u>.
 - How surfaces affect the diffusion and transport of nanoparticles for <u>enhanced oil recovery</u>.
 - How colloids flow in microchannels for <u>3-d printing and</u> <u>drilling fluids.</u>
 - How bacteria move on surfaces for <u>antifouling coatings</u>.
 - How bacteriophage attach to surfaces for <u>ultrasensitive</u> <u>diagnostics</u>.
- Our work in soft condensed matter is <u>interdisciplinary</u>, as is much of modern science and engineering.