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Fluid: physical definition

A fluid is a material that flows under an applied stress

Liquid: constant volume Gas: volume of container

http://water.aiche.org S — http:/sciencekids.co.nz

Two physical properties of fluids:
* Viscosity: measure of fluid resistance to stress u [mass/length-time]
» Density: p [mass/length3]
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Macroscale flows
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http:/www.youtube.com/watch?v=IRrCKp_dMXY

Many macroscale flows are characterized by large Reynolds number:

inertial force pV L
Reynolds number Re = — = > 1: turbulent
viscous force 2
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Where do flows appear in a chemical plant?

http://www.photo-dictionary.com/photofiles/list/687/1097petrochemical_plant.jpg
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Flow examples in plants (unit operations)

» Combination: mixing operation to create a homogeneous
system

- Requires control over mixing streams

« Separation: separation of mixture components

- Emulsification: creation of a liquid-in-liquid suspension
- Distillation: separation of one liquid from another liquid
- Evaporation: removal of a gas from a mixture

* Reaction: reaction among chemical species in a mixture

- Synthesis: e.g. creation of particles or chemicals
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Microfluidics: miniaturization of flows

The introduction of microfluidics or |ab-on-a-chip devices allows unit
operations to be carried out in a small format:

Liu et al., J. Pharma. Anal. 1, 175-1 83 (2011)

plant: meters to kilometers device: mm to cm
piping: cm to m channels: ym to mm

“Miniaturization puts chemical plants where you want them”: R. F. Service,
Science 202, 400 (1998)
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Length scales for microfluidic flows

MICROFLUIDIC DEVICES Micropumps/ valves/ flow sensors
' A N\
Microfilters/ microreactors
' A N
Nanotechnology/ Nanodevices? Microneedles Microanalysis systems
P . A
1A “1nm tum Y imm A 1m Length scale

%
TaL 1fL 1pL 1nL 1uL 1mL 1L 1000 L Volume scale

— ~ - —~— -
Molecules Smoke particles Human hair Man
| J w )
.Y
Viruses ‘- ~— _ | Y N |
OTHER OBJECTS Bacteria Conventional fluidic devices

Nguyen and Wereley, Fundamentals and Applications of Microfluidics, 2nd ed. (2006)
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Materials for microfluidics: elastomers

/\

http://farmé6.staticflickr.com/5022/5627347258_cd0e1b1920_z.jpg

Advantages:
- Easy to prototype and replicate (via soft lithography)
« Cheap materials (polydimethylsiloxane, commercially available)

Disadvantages:
 Flexible and deformable (poor for high-pressure applications)
» Poor resistance to organic solvents

8
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Materials for microfluidics: rigid plastics

Mair et al., Lab Chip 6, 1346-1354 (2006)

Advantages:

« Easy to prototype and replicate (via injection molding)
« Cheap materials (polyolefins, commercially available)
« Operate at high pressure

Disadvantages:
» Poor resistance to organic solvents
 Fabrication is more difficult thgn lithographic-based techniques

Tuesday, September 25, 12



Materials for microfluidics: glass

/ & "‘"

S

http://www.i-micronews.com/upload/Interviews/Micronit%20Lab-on-a-Chip%20Products-3.jpg

Advantages:

» Excellent resistance to solvents

 Rigid and non-deformable

« Compatible with high-pressure and biological applications

Disadvantages:
 Until recently, expensive to manufacture (new startups)
« High costs for design prototypes in money and time
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Materials for microfluidics: Teflon

Flow direction
——

—

Chiurnfc:rm

300 pm

gl

Toluene

Ren et e_d., Proc. Natl. Acad. Sci. USA108, 8162-8166 (2011)
Advantages:

» Excellent resistance to organic solvents
 Rigid and non-deformable
« Minimal adsorption and fouling by biological molecules

Disadvantages:
* Not transparent, precluding direct imaging using microscopy
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Microscale flow physics is different!

Folch lab (University of Washington) via YouTube
12
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Critical flow properties in devices

inertial force pV L _
Reynolds number Re = — = « 1: laminar flow
viscous force f

Physical meaning: fluid elements follow straight streamlines, and
fluid interfaces remain nearly parallel over long distances in
microfluidic devices

) time to diffuse VL _
Péclet number Pe = = > 1: fast convection
time to convect Do

Physical meaning: diffusion is very slow compared to convection in
microfluidic devices, and thus mixing requires special device
designs

13
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Combination: diffusion in microfluidics

1070 108 10° 10™ 1072 10° cm®/sec
+ + '| * ‘| l * i >
Solid Polymers Liquid Gases
Glasses

Nguyen and Wereley, Fundamentals and Applications of Microfluidics, 2nd ed. (2006)

The mixing rate in microfluidic devices is determined by the flux of diffusion:

D dc
J = 4o
= dx
flux of diffusion species concentration [kg/m3]

The diffusion coefficient Dy is inversely proportional to viscosity:
kT
O pa

e.g. for a spherical particle of radius a: Dy =

Finally, the mixing time is proportional to the square of the channel length.
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Combination: passive micromixer

Key idea: Increase the length of the flow channel

http://www.youtube.com/
watch?v=ZCMr1tHnGRs
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Combination: passive planar micromixer

Key idea: Modify geometry to obtain mixing via changing flow pattern
Perforated walls

Inlet 1 Inlet 2

Two liquids,
0.4 seconds : == )
after entering e
the mixer — -
S m—
\ i
\ =
v
\ Mixer chamber
\
\
\
e \

Outlet Melin et al., Lab Chip 4, 214-219 (2004)
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Combination: parallel lamination mixer

Key idea: Split streams to increase surface area and hence mixing

drilled
through-hole

in channel

D slowly-diffusing
analyte

. quickly-diffusing
analyte

interdiffusion
region

>

Schwesinger et al., J. Micromech. Microeng. 6, 99-102 (102)
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Combination: 3-D serpentine mixers

Key idea: Add elements to “fold” fluid via three-dimensional structure

> 2
" Qutlet

Stream 1" | )‘

Viewing
Stream 2  Window Viewing
Window
..-ff"}l
Qutlet
Stream 1~ ;
ream f Viewing
Stream 2 Window
Stream 1 ’Jf
Stream 2
. . C
Liu et al., J. Microelectromech. Syst. 9, 190-197 (2000) ©)
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Combination: 3-D microvascular networks

Key idea: Split streams in 3-d geometries to enhance mixing

Therriault et al., Nat. Mater. 2, 265-271 (2003)
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Combination: herringbone micromixers

Key idea: Add elements to “fold” fluid via chaotic advection

Slanted ridges:

3-D herringbone:

Stroock et al., Science 295, 647-651 (2002)
20
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Combination: herringbone mixer movie

Folch lab (University of Washington) via YouTube
21

Tuesday, September 25, 12



Combination: microfluidic valving

Key idea: Fabricate a plastic valve that is separately actuated with air
A B

Unger et al., Science 288 113-116 (2000)

A

/

L/ i
SO,

S \\\\\ \\\\\\R mold
l [ flat

substrate
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Combination: colloid valves

Key idea: Incorporate micron-sized colloidal particles into devices

passive valve actuated valve

Terray et al., Science 296, 1841-1844 (2002)
23
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Combination: in-situ piston

Key idea: Photopolymerize parts in place in microfluidic devices

microfluidic piston piston -~

-'_-_'._-—--_-_l_

channel c | - .

Hasselbrink et al., Anal. Chem. 74 4913-4918 (2002)
24
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Separation: emulsification (“droplets”)

Key idea: Exploit the Rayleigh-Plateau instability to create emulsion drops

—————————

. I
Water |I :
| |
U/
| ' <4 Qi
60um 30um 60um

Wikipedia

Stress: elongates jet of liquid o
Surface tension: minimizes surface area : 30um I
Result: jet breaks up into drops

25 Thorsen et al., Phys. Rev. Lett. 86 4163-4166 (2001)
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Emulsification: flow-focusing
Key idea: “Pinch off” droplets using a flow-focusing geometry

Q/Q,
1/40

o

Anna et al., Anal. Chem. 74 4913-4918 (2002)
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Droplets + valving = adjustable sizes

Tuesday, September 25, 12



Emulsification: enhanced mixing in drops

Key idea: Recirculation within drops enhances mixing rates

7

water fraction

0.84
——

Tice et al., Langmuir 19 9127-9133 (2003) 1.00

28
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Emulsification: drops in drops (in drops...)

Key idea: Encapsulate drops in other drops to create multiple emulsions

a) Middle Fluid GUtEf Fluid (Q;)
(Q) :

=|___|Inner Fluid

Outer Fluid | s —p— P —— i W’

........... | ﬂru ‘

3 .. 1
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29 Chu et al., Angew. Chem

Utada et al., Science 308 537-541 (2005)
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Drops in drops: tune flow rates
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Separation: cell sorting via optical forces

Key idea: Use radiation pressure to sort cells in a microfluidic device

Sample input

@
®© O
© O
..... O
Buffer . <« Buffer
»'
rm-—- e antt BEEEE
| — | Analysis region
F-—-—q--— ;' R R

®
O
O
@ O
; y
Waste Collection

Wang et al., Nat. Biotechnol. 23 83-87 (2005)

1
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Separation: particle sorting via gravity

Key idea: Use gravity to sort particles of different mass
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Huh et al., Anal. Chens‘lé 79 1369-1376 (2009)
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Separation: deterministic lateral displacement

Key idea: Particles of different diameter follow different streamlines

B
\ /
\ Small gap
Flow - t
[;ﬁf ‘
V . .
||||| Large gap
C

Brightness

0 --------- PUP————
0 500 1000 1500
Lateral Position x (um)

Huang et al., Science 304 987-990 (2004)
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Separation of parasites from blood

ooqoooooooooooooo
0600$00000000000000¢
00000000000000000000
'oooqoooooooooooooooo




Separation: motile sperm sorter

Key idea: Live cells swim across laminar streamlines

Cho et al., Anal. Chem. 75 1671-1675 (2003)

35
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Separation: distillation

Key idea: Establish vapor-liquid equilibrium in segmented flow and separate
vapor using capillary forces

1 Stage distillation

Vapor
Condensate
+ N,

Membrane

Vapor-liquid segmented flow Liquid

Hartman et al., Lab Chip 9, 1843-1849 (2009) Bottoms
36
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Reaction: drops as microreactors

Key idea: Drops increase reaction rates by increasing surface-to-volume
ratio, reducing diffusion distances, and enhance heat and mass transfer

Phase A segment Phase B segment

Microreactor wall

Internal vortex circulation

OAc 0.5 M NaCH ONa
o - T
O.N toluene O,N

2
1 2

0 20 40 60 80 100 120
Reaction time [s]

Ahmed et al., Adv. Synth. Catal. 348 1043-1048 (2006)
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Reaction: enzyme Kkinetics

Key idea: Design a droplet-based microfluidic system to extract kinetic
parameters of an enzymatic reaction

mixing reaction

carrier

fluid
b) 6.0 1.0

5.0 0.8 ® 58uM
= o W 3.3uM
=2 4.0 )
o D_EE' A 0.8 ILIM
8 3.0 -
o 043
& 20 E

<
10 0.2
0.0 0.0

0.0 2.0 4.0 6.0 8.0
Time / ms

Song and Ismagilov, J. Am. Chen;.S Soc. 125 14613-14619 (2003)
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Reaction: nucleation

Key idea: Design a droplet-based microfluidic system to study effect of
mixing on nucleation of protein crystals

a) carrier D) slowflow1.85mms™ c) fast flow 13.6 mm s™*

protein . fluid ' ) .
30 mg mL™ p
il

f
]
!

buffer _, : /[200um

100um

1 cycle of advection

Chen et al., J. Am. Chem. Soc. 127 9672-9673 (2005)
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Reaction: nanoparticle synthesis

Key idea: Use of gas slugs to separate small liquid reaction volumes
iIncreases the monodispersity of microfluidically-produced particles

i

J""I 1)

Q|
(7,

1

]
S
1

]

Khan et al., Langmuir 20 8604-8611 (2004) 40
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Reaction: microfiber synthesis

Key idea: Photopolymerize a flow-focused stream “on the fly”

PDMS Substrate @

|

microfibers

microtubules —

Photo image at outlet pipette

Khan et al., Lab Chip 4 576-580 (2004)
41
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Reaction: gradient etching

Key idea: Gradients in reactant composition generate differences in etching
rates through a surface

Thickness (nm)

0 250 500 750 1000
Jeon et al., Langmuir 16 8311-8316 (2000) Distance (um)
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Applications of microfluidics

* Chemical synthesis
- Especially for high-value components
« Controlled release
- Pharmaceuticals
- Cosmetics
* Biotechnology
- Genomics and sequencing
- Biodetection
- Directed evolution
* Models of biological processes
- Microvasculature and veination

- Chemotaxis and chemical response

43
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Application: crystallization

Valve-based system Droplet-based system

i ] IlLoad_ i i J i
Valve protein Buffer
| I | - o — Protein Precipitant
Open |:|:| X . Close
+ * . | ] Glass 100 um
| | E1 = Close | ] B3 Open ap|ry :
_N N N —
—_—* I ‘
Open Close Fluorinated
TLoao! - carrier fluid
precipitant
D ® V) 1004
« 8 B a ' H
Tmm T mm
100 um
C
Precipitants 250 um
SlipChip (well-based) system

Crystallization trials

N oo

Protein

o Load protein @ ' ' - SI|p l ' :
< N Slip into contact
X
/", A

Preloaded
precipitants

Mix protein o
Protein with precipitants

' ' Sli
ek | Sl e

| - O |

Review article: Li and Ismagilov, An£74u. Rev. Biophys. 39, 139-158 (2010)
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Protein crystallization in “Phase Chip”

Goal of research: determine conditions and kinetic pathways for
crystallization of biological proteins (e.g. xylanase)

Key idea: Change salt concentration “on chip” in an integrated microfluidic
dewce to trlgger crystallization
“ aqueous inlets ,

LA Pt 1)

(a) reservoir inlets

e

oil&-“

' 200um 9rop in channel ‘ -
it . | (C) 40“m ‘ P p —
s — #‘ -~ ~
| - O 4

S valve !

lIJH JI .__,  '|

w’aste ouﬂet

._ S — 'drop in well ~flow channel
l.l .I 'ku, & ki . /
s it il e
o trf"u‘-‘T uqr- B we]l 100pm 39!-“*
L “'“#‘,.“w'.“r-'!' = dmp in well
-~ zone ¥e
I"'fl!‘*! Sy TV ARPRL
e R e
PR il | o CI
storage T el it [wert = ' "/ = L
Pt | [:“"'ﬂ"“""r' Heint nﬂuﬁg\o h-uu- %
! Be- “ar#“*-ﬂf  ARLATILY ERTSTER d)
; i
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Application: on-chip multistep synthesis

Goal of research: demonstrate optimized synthesis for sensitive compound

Key idea: Move all operations “on chip” in an integrated microfluidic device

£

Dilute 122;9& exchange S [o a)] I'Erggtz%igx A
2. KaCO; KF nd a: X = 18
i cnncentratlon of fluoride ‘ Ei:han':e b: X=19F
Bl Regular valve
o= Regular vahve
= | o e
M CHN
Anion- 2a,b
I

exchange

HCI
¢ iv. Solvent (3.0N)
v. Hydrolysis

OH

TR o

X
FDG (3a,b)

Concentrated KF

A 1) 100°C, 30 sec
[=1  2)120°C, 30sec

3) 135°C, 3 min

Dilute F~ — E'E'Eq , i

1) 100°C, 30 s
"' 2) 120°C, sosec

c I
HCI

Ai%n’é:\gfuﬁ‘ * (3.0N)

1 2a h

» Microfluidic synthesis Increased
yield (38%) and purity (97.6%)

» Dramatic increase in time (14
min vs 50 min)

46
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Application: programmable release

Goal of research: controllably release multiple components in a
pharmaceutical or cosmetic formulation

Key idea: Sequentially dissociate bilayer membranes in a double emulsion
o B B e

li 1
a ¥ . ] L 1.‘ \ \ ‘t, iy - ." 1

s

Srasmsasanns

13 days

Kim et al., J. Am. Chem. Soc. 133 15165-15171 (2011)
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Commercialized technology: Capsum

Capsum (France) markets encapsulation technologies to luxury cosmetics
manufacturers such as Amore Pacific (Korea)

AMOREPACIFIC

capsum.eu amorepacific.com

48
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Application: directed evolution

Goal of research: identify mutants of horseradish peroxidase enzyme with
higher catalytic activity

Key idea: Use ultrahigh throughput screening to remove inactive mutants

Agresti et al., Proc. Natl. Acad. Sci. USA 107 4004-4009 (2010)

* 108 enzyme reactions screened in 10 h (1,000x faster)
« Sample volume: < 150 L of reagent (1,000,000x cheaper)

49
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Diagnostics: typical analyte concentrations

Carbamazepine

Theophylline

DNA finger-printing/ genetic o
disorder predisposition Creatinine Cholesterol

Cancer detection  Estrogens Digoxin  Cortisol |Uric Acid Glucose Sodium

\ T

10 10° 10° (10" 10| 10" |10™ 10’ 10" 10" 10"™| 107

L

Typical molecules or copies/ mL

HIV in blood
Biothreat agents in air (after concentration)

Nguyen and Wereley, Fundamentals and Applications of Microfluidics, 2nd ed. (2006)
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Application: cancer detection

Goal of research: capture rare circulating tumor cells (CTCs) in patients’
bloodstreams for cancer detection and monitoring

Key idea: Increase surface encounter rate usmg chaotlc advection

3o MANNNRRTY
R // //ﬁ

/ e

Cancer cells detected at ~400 CTCs/mL

 Imaging-based platform identified new CTC clusters
Stott et al., Proc. Natl. Acad. Sci. USA 107 18392-18397 (2010)
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Application: tissue engineering

Goal of research: model complex vascular phenomena, including
angiogenesis and thrombosis

Key idea: Use microfluidic channels as a model for microvasculature

B |nlet

i Microvessel ii Sprouting iii Perivascular iV Whole blood
formation angiogenesis |nteract|on |nteract|on

C

i ; ; i iii
Xz plane

PDMS reservoir outlet ’

. CollagengeJ o O
@ eme @’\@ =

Attachecl ECs perlvascular cells

Collagen

Lumen

83
o
o0 OO

2 .
Fluorescence Intensity m

N

X
0 0.32 0.64 0.96 1.28 1.60 1.92 (mm)

Zheng et al., Proc. Natl. Acad. Sci. USA 109 9342-9347 (2012)
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Application: whole genome sequencing

Goal of research: analyze genome of single cells and microbial consortia

without sample contamination

Key idea: Create multiplexed chip to sort, cultivate cells and identify, amplify,

and sequence whole genomes

C column @ storage
to elution channel = 5 vave D @ @ chamber

to waste outlet
bypass

channels

A

column
valve

F peristaltic pump

| e |

—’
-
‘ﬂ
-
-

53Leung et al., Proc. Natl. Acad. Sci. USA 109 7665-7670 (2012)
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Application: chemotaxis

Goal of research: study the motion of bacteria and/or mammalian cells in
response to chemical signals

Key idea: Use gradient generators to control the (nonlinear) spatial
concentration of chemoattractant

¥ - - .
s I S R s T o ]

5 10 15

Dl
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Challenges

« Scale-up
- Transition from “lab scale” devices to plant-scale operations
- 2-d to 3-d layouts
* Interplay between parallelized chips
- Need to generate uniform flow across multiple devices
- Synchronization and chaotic effects

* Clogging and unsteady flow

55

Tuesday, September 25, 12



Summary of lecture

* Microfluidics enables mini “chemical plants”
- Exceptional control over reactions and mixing
- Naturally achieves continuous production
« Optimal usages of microfluidic devices:
- Specialty chemicals and high-value chemicals
- Hard-to-produce molecules (especially biomolecules)
* Industries impacted by microfluidics
- Biotechnology: genome sequencing, protein crystallization
- Chemical synthesis: radiolabeled molecules
- Manufacturing: designer specialty cosmetics

* Opportunities abound for chemical and biomolecular
engineers to design new microfluidic processes

56
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